Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Энергия, теплота, закон сохранения энергии и первое начало (принцип) термодинамики
Создание классической физики, начатое и осуществленное Галилеем и Ньютоном в XVII-XVIII веках, получило логическое завершение только в конце XIX века. Параллельно с развитием механики, в XVIII веке разрабатываются представления о тепле. Так, один из разделов в тепле — термометрия, получил развитие в начале XVIII века благодаря работам Реомюра, Цельсия, Фаренгейта. Наибольшее распространение получила система (шкала) измерения температур по Цельсию, отправными реперами в которой послужили температуры замерзания и парообразования воды, принятые Цельсием за 0 и 100 градусов. Познание явлений, связанных с теплом, привело не только к новой ветви классического физического естествознания — термодинамической, но и позволило ввести и по-новому осмыслить ее такие ключевые понятия как теплота, энергия и их взаимосвязь. Из всех физических терминов и понятий, пожалуй, самым известным является энергия (от греч. energia — деятельность). Это слово прочно вошло в обиход всех людей, и, естественно, употребляя слово «энергия», большинство не знает, что энергия является одним из самых фундаментальных понятий в физике и что с энергией связаны свойства пространства-времени. Среди множества законов природы своей универсальностью выделяются законы сохранения. Среди них один из самых фундаментальных законов — закон сохранения энергии. Как установили ученые, сохранение энергии связано с однородностью времени, что можно упрощенно и образно представить как неизменность темпа времени в разные моменты его течения. Открытие закона сохранения энергии связывают с именами нескольких ученых, а именно, считают, что Р. Май-ер, Д. Джоуль, Г. Гельмгольц, Э. Ленц сформулировали закон сохранения и превращения энергии. Открытию закона сохранения и превращения энергии способствовали экспериментальные и теоретические работы в области тепловых процессов, физиологии и самой физики, что, в конечном итоге, привело к созданию науки, получившей название термодинамика. Одной из таких великих работ является труд французского физика и инженера Сади Карно (1796-1832 гг.) «Размышления о движущей силе огня и о машинах, способных развивать эту силу». Работа Карно и явилась началом термодинамики, предложенный им термодинамический способ решения задач используется и в современной физике. В своей работе Карно практически дал формулировку закона сохранения энергии, используя понятие тепло: «Тепло не что иное, как движущая сила, вернее, движение, изменившее свой вид; это движение частиц тела.» Движущая сила существует в природе в неизменном количестве; она, собственно говоря, никогда не создается и не уничтожается.»». С этого момента времени тепло, теплота, тепловая энергия становятся предметом пристального внимания и изучения учеными многих специальностей — физиков, химиков, врачей и т. д. Физиология того времени также отказывается от таинственных жизненных сил и пытается описать жизненные процессы естественным образом. В 1840 г. петербургский академик Герман Гесс формулирует положение о сохранении количества теплоты, выделяющейся при химических реакциях независимо от способов перехода, если только физическое состояние веществ не изменяется. Это положение означало, что химики уже практически подошли к открытию закона сохранения энергии. К середине XIX века наука стояла на пороге открытия закона сохранения энергии. Английский физик Джеймс Джоуль (1818-1889) в 1841 г., а российский академик физик и электротехник Эмилий Ленц (1804-1865 гг.) в 1842 г., изучая тепловое действие электрического тока, открывают независимо друг от друга закон о количестве выделяющегося тепла, который получил впоследствии имя Джоуля-Ленца. Более того, хотя Ленц не сформулировал, как таковой, закон сохранения энергии, он неявно этот закон использовал в своих исследованиях. В 1845 г. немецкий врач и ученый Роберт Майер (1814-1878 гг.) написал работу, в которой подробно исследовал различные виды сил (энергий): механическую силу, силу падения (не до конца осознавая, что она является некоторым видом потенциальной энергии), теплоту, электричество, химическую силу. Он составил таблицу всех рассмотренных сил и описал 25 случаев перехода одной формы движения (силы, энергии) в другую, анализируя их на основе закона сохранения. (Кстати, Р. Майер высказал фундаментальную гипотезу о том, что основным источником энергии на Земле является Солнце. С его точки зрения, любое растение является химической лабораторией, в которой происходит преобразование солнечной энергии в химическую. Это явление, получившее название фотосинтеза, было успешно изучено российским ученым Климентием Тимирязевым). В 1851 г. Майер пишет работу «Замечания о механическом эквиваленте теплоты», в которой, в частности, защищает свой приоритет перед Джоулем в открытии закона сохранения и превращения энергии. Дело в том, что Джоуль, параллельно с Р. Майером и выдающимся немецким ученым-энциклопедистом Германом Гельмгольцем, работал над законом сохранения энергии в экспериментальном плане. Многочисленные опыты Джоуля показали, что механическая энергия превращается в теплоту, и определили механический эквивалент теплоты. Из работ Джоуля следовало, что теплота не является веществом, что она состоит в движении частиц. И в этом месте повествования об энергии поставим простой, даже примитивный вопрос: Что это такое — энергия? Такого же простого ответа дать невозможно. Энергия существует во всевозможных формах. Есть энергия, связанная с движением (кинетическая энергия); энергия, связанная с гравитационным взаимодействием (энергия тяготения); тепловая, электрическая и световая энергии; энергия упругости в пружинах, химическая энергия, ядерная энергия и, наконец, энергия, которой обладает частица (всякое тело) в силу своего существования -эта энергия пропорциональна массе и рассчитывается по знаменитой формуле Эйнштейна Е = тс2 (формула возникла в механике специальной теории относительности Эйнштейна, см п. 4.1). Итак, существует много видов энергии, и ученые выяснили достаточное количество информации об их взаимосвязи. Например, сейчас мы знаем, что тепловая энергия тела это есть, по сути, кинетическая энергия хаотического движения частиц в теле. Упругая энергия и химическая энергия имеют одинаковое происхождение -электромагнитное взаимодействие между атомами и молекулами. Очевидно, с каждым из четырех видов фундаментальных взаимодействий (гравитационным, электромагнитным, слабым и сильным) можно связать соответствующую энергию, но, вероятно, энергетические соотношения являются даже более универсальными, чем взаимодействия. Эйнштейн считал, что гравитация порождается энергией, в силу того, что энергия эквивалентна массе, а масса ответственна за гравитацию (будет изложено в пп. 4.1 и 4.4). Более того, сильное (оно же ядерное) взаимодействие имеет обменный характер, и, опосредованно, через массы виртуальных частиц, энергия «проникает» и в сильное взаимодействие. Поразительно другое: мы знаем множество разных видов энергии, очевидно, много еще не знаем, но абсолютно уверены в том, что эта величина (энергия) при различных процессах и превращениях в точности сохраняется. Сравним закон сохранения энергии с законом сохранения электрического заряда. Закон сохранения заряда — наиболее простой и наиболее понятный закон сохранения. Дело в том, что в природе существует минимально возможный (дискретный, квантованный, если угодно) заряд, он равен заряду электрона. Поэтому, если в некоторой системе до взаимодействия был известен суммарный заряд (т. е. число этих минимальных «кирпичиков» заряда), то в процессе взаимодействия сохранение заряда системы просто означает неизменность числа этих «кирпичиков». Для энергии таких «кирпичиков» не существует, но, тем не менее, мы уверены, что во всех мыслимых и немыслимых процессах энергия сохраняется. Интересный пример использования закона сохранения энергии, даже правильней будет сказать, пример мощи закона сохранения энергии, демонстрирует реакция распада нейтрона на протон, электрон и нейтрино. Сначала думали, что нейтрон превращается в протон и электрон. Но когда измерили энергию всех частиц, оказалось, что энергия протона и электрона меньше энергии нейтрона. Даже великий Нильс Бор засомневался тогда в точном выполнении закона сохранения энергии и предположил, что этот закон сохранения выполняется только в среднем, статистически. Но оказалось правильным другое объяснение. Энергии не совпадают потому, что при реакциях возникает еще какая-то частица (позднее она была названа великим итальянским физиком Энрико Ферми нейтрино), которая и уносит с собой часть энергии. Предположение это высказал австрийский физик Вольфганг Паули и тем самым «спас» закон сохранения энергии. Вот что говорил о законе сохранения энергии выдающийся американский физик, нобелевский лауреат Ричард Фейнман: «Сохранение энергии — несколько более сложный вопрос: хотя и здесь у нас есть число, которое не меняется со временем, число это не соответствует никакому определенному предмету...». В самом начале этого параграфа мы сказали, что закон сохранения энергии связан с однородностью времени. Рассмотрим подробнее связь законов сохранения с симметрией пространства-времени. Простейший пример симметрии пространства — симметрия относительно параллельного переноса, сдвига, трансляции. Интересное свойство природы заключается в том, что какое-либо явление, протекающее в определенной точке пространства, будет происходить точно так же в другой точке пространства, куда мы переместим все атрибуты параллельным сдвигом. В частности, из неизменности физических законов при параллельных сдвигах в пространстве следует закон сохранения импульса системы. Закон сохранения энергии следует из неизменности физических законов при параллельных сдвигах во времени (общее математическое доказательство существования ряда законов сохранения в механике было дано в 1918 г. выдающейся немкой Эмми Нетер). Опыт, проведенный сто лет назад и сейчас, при абсолютно точном повторении условий тогдашнего опыта, должен был бы дать абсолютно одинаковый результат, в этом и заключается симметричность физических законов относительно временных сдвигов. Но нужно помнить, что и сто лет, и тысяча лет - это малая доля времени на фоне космологического времени, отсчитываемого от так называемого Большого Взрыва (от момента возникновения Вселенной, см. п. 4.4 и главу 5). Может быть, симметрия относительно временных сдвигов нарушается, если сдвиги эти были бы большими (например, была бы возможность сравнить идентичные опыты с интервалом времени в 1 млрд. лет, но тогда и человека-то просто еще не было), или если бы эти сдвиги наблюдались бы вблизи «большого взрыва». Оба варианта не осуществимы для проверки, поэтому говорить о нарушениях закона сохранения энергии в связи с неоднородностью времени мы не можем. Итак, всеобщим законом природы является закон сохранения энергии. Его называют еще первым началом термодинамики. Этот закон подтвержден бесчисленными наблюдениями и опытами как напрямую, так и через разнообразные его следствия. Виды энергии многообразны. В механике мы знаем два вида энергии — кинетическую и потенциальную. Кинетическая — это энергия движения, потенциальная — энергия положения. В более широком смысле потенциальной называют и энергию состояния. Например, физическая смесь водорода и кислорода обладает потенциальной химической энергией (когда они образуют в результате реакции новое химическое соединение — воду), в сжатой пружине содержится потенциальная упругая энергия и т. д. Для дальнейшего рассмотрения возможностей образования структур из природных элементов (элементарных частиц, атомов, молекул, планет, звезд, галактик и т. д.), будет существенно понятие об энергии связи в какой-либо механической или физической системе. Ей называют величину, на которую, например, уменьшится энергия системы Земля + метеорит после падения метеорита (Тунгусского или Сихотэ-Алинского), из-за выделившегося тепла, механического разрушения горных пород и тела метеорита и т. д. С энергией связи мы сталкиваемся постоянно, изучая природу. Так, в недрах Солнца, как полагает современная астрофизика и физика термоядерного синтеза, осуществляется (если говорить упрощенно) слияние ядер атомов водорода с образованием ядер гелия и выделением огромной энергии связи в виде кинетической энергии продуктов термоядерной реакции, которая рассеивается в окружающей среде в виде тепла и излучения. В автомобильном двигателе водород и углерод бензина связываются с кислородом — выделяется и превращается в тепло опять энергия связи (в данном случае — химической). Чем прочнее связь, тем больше выделяется энергии при ее образовании и тем больше, соответственно, потребуется затратить энергии, чтобы эту связь снова разорвать. Образование любых структур всегда связано с выделением и рассеянием энергии связи, то есть всегда связано с диссипацией (рассеянием), общим понижением качества энергии. Кстати, прежде чем образоваться углерод-кислородным и водород-кислородным связям при сжигании топлива, должны быть разорваны связи между углеродными и водородными атомами в углеводородах бензина, а также между атомами кислорода в его молекуле, на что нужно затрачивать энергию. Но межатомные углеродные и водородные связи в молекулах топлива и связи в молекуле кислорода намного слабее кислородных связей в продуктах сгорания, и затраты гораздо меньше выигрыша. Энергия, затрачиваемая на разрыв связей в компонентах горючей смеси (и на сближение освободившихся атомов с атомами кислорода), называется энергией активации и черпается из теплового движения молекул. Поджигание смеси искрой — это сообщение молекулам необходимой первоначальной энергии активации. Дальше горение поддерживается уже за счет тепла, выделяемого в его процессе. Если бы не необходимость в энергии активации, вещества, способные связываться с выделением энергии (например, органика в земной кислородной атмосфере), вообще не могли бы существовать в соседстве друг с другом. В урановых ядерных реакторах, с помощью которых уже сейчас производят примерно 15% электроэнергии в мире, источником энергии служит деление ядер урана. Но, тем не менее, выделяется опять-таки энергия связи: во фрагментах разделившегося ядра урана нуклоны связаны прочнее, чем в исходном ядре, и разница энергий связи и переходит в кинетическую энергию продуктов деления, а затем в тепло. Водород — основной элемент Вселенной, и синтез гелия из него — основной, первичный, источник энергии для всех наблюдаемых нами процессов. Все наши земные горючие ископаемые и кислород атмосферы — это продукт воздействия на Землю энергии Солнца, которая обусловлена синтезом гелия из водорода. Излучение Солнца разрывает химические связи и запускает сложные цепочки реакций, которые приводят к накоплению потенциальной химической энергии их продуктов. Резюме Энергия — физическая характеристика, введенная когда-то учеными, определяет потенциальную возможность системы совершить механическую работу. Это понятие оказалось, наверное, одним из самых важных потому, что все процессы как в живой, так и в неживой природе невозможно описать без этого понятия. Без энергии невозможно существование жизни. Вопрос, связанный с механизмами использования и добычи энергии, относится к энергетике. В процессе жизнедеятельности, в том числе, и при решении энергетических проблем, человечество столкнулось с вопросами несовместимости человеческих потребностей и природных возможностей. Это сложнейшая экологическая проблема современности!
Вопросы для обсуждения 1) Энергия — важнейшая физическая характеристика. Виды энергии — механическая, тепловая, электромагнитная, гравитационная, ядерная. 2) Закон сохранения энергии и однородность времени. 3) Проблемы энергетики. Существующие в настоящее время источники энергии: химическая энергия сгорания топлива (газ, нефть, уголь); механическая энергия воды и ветра (гидроэлектростанции и ветровые электростанции); солнечная энергия излучения (солнечные батареи); ядерная энергия (АЭС); в будущем: термоядерная энергия синтеза («горячий» и «холодный» ядерный синтез). 4) Проблемы экологии, связанные с энергетикой.
Популярное:
|
Последнее изменение этой страницы: 2016-03-22; Просмотров: 994; Нарушение авторского права страницы