Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Глава 5. Генеративные органы
Генеративные, или репродуктивные, органы выполняют функцию полового размножения. Цветок Цветок — это видоизмененный, укороченный, ограниченный в росте, неразветвленный побег, предназначенный для образования спор и гамет и полового процесса, завершающегося образованием семян и плода. Таким образом, цветок является органом полового и бесполого размножения покрытосеменных растений. Морфология цветка У цветка различают цветоножку, цветоложе, околоцветник, образованный чашечкой из чашелистиков и лепестками венчика, тычинки и один или несколько пестиков (рис. 40). У некоторых цветков отдельные части могут отсутствовать.
Цветки могут иметь различную симметрию, которая определяется, главным образом, венчиком (рис.41). В зависимости от типа симметрии различают: © правильные цветки — цветки, через которые можно провести несколько плоскостей симметрии (капуста, гвоздика, лилия, ландыш); © неправильные цветки — цветки, через которые можно провести одну плоскость симметрии (горох, астра); © несимметричные цветки — цветки, не имеющие ни одной плоскости симметрии (валериана, канна).
© пестичные (женские) имеют только пестики; © тычиночные (мужские) имеют только тычинки. В зависимости от распределения однополых цветков на растениях различают: © однодомные растения (5-8%) — растения, у которых на одних и тех же экземплярах располагаются и женские, и мужские цветки (огурец, кукуруза, дуб); © двудомные растения (около 3-4%) — растения, у которых на одних экземплярах располагаются женские, а на других — мужские цветки (крапива двудомная, конопля, облепиха); © многодомные растения (10-20%) — растения, у которых на одних и тех же экземплярах встречаются как обоеполые, так и однополые цветки в различных количественных соотношениях (гречиха, некоторые виды ясеня, клена).
Цветоножка — это междоузлие под цветком. Цветки, лишенные цветоножки, называются сидячими (цветки в соцветии корзинка у подсолнечника, астры, одуванчика).
Цветоложе — укороченная стеблевая часть цветка. На ней располагаются все остальные части цветка. Форма цветоложа может быть различной: плоской (пион), выпуклой полушаровидной (лютик, ветреница), удлиненной конической (магнолия) и др. У некоторых растений цветоложе срастается с нижними частями покровов цветка и тычинок (цветочная трубка), образуя при этом особую структуру - гипантий. Форма гипантия может быть воронковидной (вишня), бокаловидной (таволга дубровколистная), шаровидной (роза морщинистая), блюдцевидной (смородина альпийская).
Околоцветник — стерильная часть цветка, его покров (рис. 42). Выполняет функцию защиты главных частей цветка — пестиков и тычинок, функцию привлечения опылителей. Околоцветник может быть: © Простой — околоцветник, не дифференцированный на чашечку и венчик, образованный совокупностью однородных листочков, имеющих одинаковые размеры и окраску. В зависимости от особенностей строения различают: ¨ венчиковидный околоцветник — околоцветник, образованный ярко окрашенными листочками (тюльпан, лилия); ¨ чашечковидный околоцветник — околоцветник, образованный зелеными листочками (крапива, конопля). © Двойной — околоцветник, дифференцированный на чашечку и венчик, отличающиеся друг от друга размерами и окраской (картофель, горох). Встречаются так называемые голые цветки — цветки, лишенные околоцветника (ива, тополь).
Чашечка — наружная часть двойного околоцветника. Чашечка представляет собой совокупность чашелистиков — видоизмененных прицветных листьев Обычно чашелистики имеют небольшие размеры и зеленую окраску. Они сходны с обычными листьями, но устроены проще. Обычно чашечка образована одним кругом чашелистиков. Цветки некоторых растений имеют особую структуру — подчашие, развивающееся из прицветников (мальва), иногда из прилистников (земляника). Различают: © раздельнолистную чашечку — чашечку, образованную свободными (несросшимися) чашелистиками (капуста, лютик); © сростнолистную чашечку — чашечку, образованную частично или полностью сросшимися чашелистиками (картофель, табак, горох). Главная функция — защита внутренних частей цветка до раскрывания бутона.
Венчик — внутренняя, обычно окрашенная часть двойного околоцветника. Представляет собой совокупность лепестков, часто имеющих яркую окраску. Количество лепестков венчика может быть различным — от одного-двух до неопределенного числа, чаще три, четыре или пять. Махровыми называют цветки с ненормально увеличенным числом лепестков. Лепестки могут быть более или менее одинаковыми (лютик, яблоня), либо отличаться размерами и формой (фиалка, горох). В результате венчик может быть правильным, неправильным или асимметричным.
Раздельнолепестной венчик состоит из свободных, несросшихся лепестков. Сростнолепестной венчик состоит из сросшихся в той или иной степени лепестков. Главная функция венчика — привлечение опылителей. У некоторых растений венчик защищает главные части цветка от неблагоприятных воздействий.
Андроцей — это совокупность тычинок (микроспорофиллов) одного цветка. Количество тычинок в цветке — от одной (орхидные) до нескольких сотен (некоторые кактусы). У большинства растений тычинок сравнительно немного: у ирисовых — 3, у сложноцвет- ных — 5, у лилейных — 6, у мотыльковых — 10. У большинства растений тычинка состоит из тычиночной нити и пыльника (рис. 43).
Тычиночная нить — нижняя, как правило, суженная стерильная часть тычинки. Нижний конец тычиночной нити отходит от цветоложа, а верхний конец несет пыльник. Обычно тычиночные нити тонкие, длинные, в сечении округлые.
Пыльник — верхняя расширенная фертильная часть тычинки. Пыльник состоит из двух половинок, соединенных связником. Каждая половинка имеет, как правило, два пыльцевых гнезда, или пыльцевых мешка (микроспорангия), в которых происходит образование микроспор, а впоследствии пылинок. Связник является продолжением тычиночной нити. Это стерильная средняя часть пыльника. Через связник в пыльник поступают питательные вещества, так как в нем имеется сосудисто-волокнистый пучок.
Микрогаметогенез — процесс образования мужского гаметофита из микроспор. Развитие мужского гаметофита также происходит в пыльнике и сводится к одному митотическому делению, которое заканчивается образованием пыльцевого зерна, или пылинки. К моменту прорастания пыльцевого зерна ядро споры митотически делится, что приводит к возникновению двух клеток: © генеративной, или спермагенной — мелкой клетки, прилегающей к оболочке микроспоры. Позже из нее образуются два спермия. © сифоногенной, или " клетки пыльцевой трубки" — крупной клетки, принимающей впоследствии участие в образовании пыльцевой трубки. Часто ее называют " вегетативной". Таким образом, пылинка представляет собой незрелый мужской гаметофит покрытосеменного растения, состоящий из двух клеток (спермагенной и сифоногенной), покрытых оболочкой. Оболочка (спермодерма) пыльцевого зерна состоит из двух главных слоев: © интина — внутренняя, тонкая, состоящая в основном из пектиновых веществ; © экзина — наружная, толстая, часто кутинизированная. У большинства пыльцевых зерен спермодерма имеет утонченные места или даже сквозное отверстие в экзине, служащие для выхода пыльцевой трубки.
Пестик — закрытое вместилище для семязачатков (семяпочек, или мегаспорангиев), образованное в результате смыкания или срастания краев плодолистика или плодолистиков (рис. 45). Обычно пестик состоит из трех частей: завязи, столбика и рыльца. Завязь — наиболее важная часть пестика (замкнутая, нижняя, полая), несущая и защищающая семязачатки. В зависимости от положения по отношению к другим частям цветка завязь бывает (рис. 46): © верхняя — располагается на цветоложе свободно, образована только плодолистиками, не срастается с другими частями цветка (мак, чистотел, гвоздика); © нижняя — плодолистики срастаются с цветоложем, основаниями чашелистиков, лепест- ков и тычинок (яблоня, груша, огурец); ©
В завязи может располагаться от одного (пшеница, вишня) до нескольких тысяч (мак) семязачатков. Стенки завязи выполняет функцию защиты семязачатков от неблагоприятных факторов среды (высыхание, колебание температур, поедание насекомыми и т.д.), внутри завязи (в семязачатках) происходит мегаспорогенез и мегагаметогенез, они принимают участие в образовании околоплодника. Столбик — средняя более или менее удлиненная стерильная часть пестика, отходящая обычно от верхушки завязи. Он соединяет завязь и рыльце. У одних растений столбик отсутствует (мак, пшеница), у других — достигает значительной длины (лилия). Рыльце — верхняя расширенная часть пестика. Предназначено для
Рыльце может быть самой разнообразной формы (головчатое, двухлопастное, звездчатое, перистолопастное и т.д.) и размера в зависимости от особенностей опыления. При отсутствии столбика рыльце называют сидячим. Семязачаток — многоклеточное образование семенных растений, из которого развивается семя (рис. 47). Место возникновения или прикрепления семязачатка к плодолистику называется плацентой. Сформированный семязачаток состоит из нуцеллуса (ядра) — центральной части, являющейся мегаспорангием, двух покровов — интегументов, которые при смыкании образуют узкий канал — микропиле, или пыльцевход, через который пыльцевая трубка проникает к зародышевому мешку. С помощью семяножки семязачаток прикрепляется к плаценте. Место прикрепления семязачатка к семяножке называют рубчиком. Противоположную микропиле часть семязачатка, где сливаются нуцеллус и интегументы, называют халазой. В семязачатке происходит мегаспорогенез, мегагаметогенез и процесс оплодотворения. После оплодотворения (реже без него) из семязачатка формируется семя.
Мегаспорогенез — процесс формирование мегаспор (рис. 48). Он происходит в нуцеллусе семязачатка. После заложения семязачатка и формирования нуцеллуса в области микропиле начинает разрастаться одна археспориальная (спорогенная) клетка — мегаспороцит, или материнская клетка мегаспор. Материнская клетка мегаспор имеет диплоидный набор хромосом. У большинства покрытосеменных из нее путем мейоза формируется 4 гаплоидных мегаспоры. Из четырех мегаспор лишь одна (обычно нижняя, обращенная к халазе (халазальная), реже верхняя, обращенная к микропиле (микропилярная) дает начало женскому гаметофиту — зародышевому мешку. Остальные мегаспоры отмирают. Женский гаметофит внешне напоминает мешочек, в котором после оплодотворения развивается зародыш. Поэтому он и назван зародышевым мешком.
Формирование женского гаметофита начинается с того, что мегаспора разрастается и отодвигает ткань нуцеллуса к интегументам. Ядро мегаспоры (первичное ядро зародышевого мешка) подвергается трехкратному митотическому делению. В результате первого деления образуются два ядра, которые расходятся к полюсам разросшейся клетки. Между ними образуется крупная вакуоль. Каждое из этих ядер еще дважды делится, и у каждого полюса образуется по 4 ядра (8-ядерная стадия развития зародышевого мешка). С каждого полюса к центру зародышевого мешка отходит по одному ядру, которые называются полярными. Оставшиеся ядра обособляются. На микропилярном полюсе одна из клеток отличается большими размерами и преобразуется в яйцеклетку. Две рядом расположенные клетки являются вспомогательными. Их называют синергидами. Вместе с яйцеклеткой они образуют яйцевой аппарат. На противоположном, халазальном полюсе образуется группа из трех клеток, называемых антиподами. Их функции неизвестны. Два полярных ядра в центре зародышевого мешка сливаются, образуя вторичное (центральное) ядро зародышевого мешка. Таким образом, сформированный женский гаметофит включает 6 гаплоидных клеток (яйцеклетка, 2 клетки-синергиды и 3 клетки-антиподы) и диплоидное вторичное ядро.
Цветки некоторых растений имеют особые железки, выделяющие нектар — нектарники. Они имеют различное происхождение и развиваются на лепестках, тычиночных нитях, стенках завязи, цветоложе. Нектар — сахаристая питательная жидкость, привлекающая животных-опылителей. Соцветия Цветки на побегах очень редко располагаются одиночно (мак, тюльпан). У большинства растений они образуют группы — соцветия (морковь,
Любое соцветие имеет главную ось (ось соцветия) и боковые оси, которые могут быть ветвящимися и неветвящимися. Главную ось называют осью первого порядка, боковые оси — осями второго, третьего и т.д. порядков. Конечные ответвления осей (цветоножки) несут цветки. В зависимости от степени ветвления соцветия делят на простые и сложные. Соцветие, имеющее только главную ось, на которой располагаются цветки на цветоножках или сидячие, называется простым (рис. 49). © Кисть — соцветие, у которого главная ось удлинена, а цветки располагаются на хорошо выраженных цветоножках более или менее одинаковой длины (ландыш, черемуха). Это основной вариант простых соцветий. © Щиток — соцветие, у которого на главной оси располагаются цветоножки разной длины, причем нижние значительно длиннее верхних, и все цветки располагаются в одной плоскости (груша, боярышник, калина). © Колос — соцветие с хорошо выраженной главной осью и сидячими цветками (подорожник, ятрышник, ослинник). © Початок — соцветие с хорошо выраженной толстой мясистой главной осью и сидячими цветками (белокрыльник, аир). © Зонтик — соцветие с укороченной главной осью и цветками на цветоножках одинаковой длины (лук, чистотел, примула). © Головка — соцветие с укороченной булавовидно расширенной главной осью и сидячими или почти сидячими (цветоножки очень короткие) цветками (клевер, люцерна). ©
Сложными называют соцветия, у которых, помимо главной, имеются и боковые оси, несущие цветки (рис. 50). Можно говорить, что в сложных соцветиях на главной оси располагаются не цветки, а простые (элементарные) соцветия. В сложном соцветии цветков, расположенных на главной оси, нет. © Двойная кисть — соцветие, у которого на главной оси располагаются соцветия простые кисти. © Сложный колос — соцветие, у которого на главной оси располагаются соцветия простой колос (пшеница, рожь, ячмень). © Сложный зонтик — соцветие, у которого на укороченной главной оси располагаются соцветия простой зонтик, называемые зонтичками (укроп, морковь, петрушка). © Метелка — соцветие, имеющее большое количество боковых осей, при- чем нижние оси ветвятся и развиты сильнее верхних (мятлик, гортензия метельчатая, сирень). Из-за особенности ветвления метелка имеет пирамидальную форму Биологическое значение соцветий заключается в повышении вероятности опыления как насекомоопыляемых, так и ветроопыляемых растений. Опыление Опыление — это перенос пыльцы с тычинок на рыльце пестика. Различают: © естественное опыление — опыление, происходящее в природе; © искусственное опыление — опыление, осуществляемое человеком.
Естественное опыление бывает двух видов: самоопыление и перекрестное опыление.
Самоопыление, или автогамия — опыление, при котором пыльца с тычинок переносится на рыльце пестика того же самого цветка. Оно происходит только у растений с обоеполыми цветками. Самоопыление происходит у многих культурных растений (овес, просо, ячмень, многие сорта пшеницы, рис, горох, помидор). Оно происходит как у раскрывшихся цветков (сельдерейные), так и у закрытых (арахис, фиалка, кислица). Чаще всего оно происходит в еще не раскрывшихся цветках. Самоопыление встречается реже, чем перекрестное. Лишь у немногих растений происходит строгое самоопыление (горох), у большинства самоопыляющихся растений хотя бы небольшой процент растений способен к перекрестному опылению. При самоопылении происходит стабилизация видовых признаков. Эта особенность используется в селекции для получения чистых линий. Однако самоопыление может привести и к вырождению вида в результате возникновения явления депрессии.
Перекрестное опыление, или аллогамия — опыление, при котором пыльца с пыльника тычинки одного цветка переносится на рыльце пестика другого. Данный способ опыления характерен для большинства (90%) покрытосеменных растений. Различают две формы перекрестного опыления: © Соседственное опыление — опыление, происходящее в пределах одного растения, то есть пыльца с одного цветка попадает на пестик другого цветка, находящегося на том же растении. С генетической точки зрения эта форма перекрестного опыления равноценна самоопылению. © Собственно перекрестное опыление — опыление, при котором пыльца тычинки цветка одной особи переносится на рыльце пестика цветка другой особи. Строго перекрестноопыляемых растений мало (рожь). При неблагоприятных условиях, препятствующих перекрестному опылению, обычно в конце цветения, у перекрестноопыляемых растений может происходить самоопыление.
Механизмы перекрестного опыления подразделяют на два основных типа: © Абиотическое — опыление с помощью неживых факторов среды: ¨ анемофилия — опыление с помощью ветра; ¨ гидрофилия — опыление с помощью воды. © Биотическое — опыление с помощью животных: ¨ энтомофилия — опыление насекомыми; ¨ орнитофилия — опыление птицами. Наиболее часто опыление происходит с помощью ветра и насекомых. Ветроопыляемые растения (рожь, кукуруза, хмель, тополь, береза, осина) имеют, как правило, мелкие, невзрачные цветки (околоцветник может быть вообще редуцирован), лишенны в большинстве случаев запаха и нектара, образуют многоцветковые соцветия. Тычинки и рыльца пестиков выступают за пределы околоцветника. Часто рыльца пестиков мохнатые. Пыльца мелкая, легкая, гладкая, образуется в огромных количествах. Такие растения, как правило, произрастают на открытых пространствах или группами. Деревья и кустарники часто цветут до развертывания листьев. У насекомоопыляемых растений (сирень, гвоздика, мак, липа, белая акация) яркоокрашенные цветки. Одиночные цветки крупные, мелкие собраны в хорошо заметные соцветия. Они выделяют нектар и имеют запах. Пыльца обычно крупная с шероховатой поверхностью, часто липкая.
Искусственное опыление используется человеком для повышения урожайности растений или для выведения новых сортов. 5.1.4. Оплодотворение. Попав на рыльце пестика, под воздействием веществ, выделяемых пестиком, пыльца начинает прорастать. Она набухает, и ее содержимое, одетое интиной, начинает выпячиваться через поры экзины. В результате образуется пыльцевая трубка, внедряющаяся в ткань рыльца. Кончик пыльцевой трубки выделяет вещества, размягчающие ткань рыльца и столбика, тем самым облегчая ее продвижение. По мере роста в пыльцевую трубку переходят сифоногенная и спермагенная клетки. У некоторых растений спермагенная клетка еще до прорастания пыльцы, а у других — в процессе прорастания, дает начало двум спермиям. Пыльцевая трубка продвигается по столбику пестика и врастает в зародышевый мешок, как правило, через микропиле. После проникновения в зародышевый мешок кончик пыльцевой трубки разрывается, и спермии попадают внутрь зародышевого мешка. Один из спермиев сливается с яйцеклеткой, образуя диплоидную зиготу, а второй — с центральным ядром зародышевого мешка, образуя триплоидное ядро, из которого формируется эндосперм (питательная ткань) — часть семени, накапливающаяся вещества, обеспечивающие питание зародыша. Синергиды и антиподы дегенерируют. Этот процесс получил название двойного оплодотворения. Таким образом, после двойного оплодотворения из яйцеклетки формируется зародыш семени, из центрального ядра зародышевого мешка — эндосперм, из интегументов — семенная кожура, из всего семязачатка — семя, а из стенок завязи — околоплодник. В целом из завязи пестика формируется плод с семенами. Двойное оплодотворение у цветковых растений было открыто в 1898 году русским ботаником С.Г.Навашиным. Семя Семя — высокоспециализированный орган полового размножения, расселения и переживания неблагоприятных условий жизни у семенных растений, развивающийся обычно после оплодотворения из семязачатка. Состав семян Семена характеризуются определенным химическим составом, который зависит от биологических особенностей вида и сорта, условий питания, возраста, температуры и т.д. Все вещества семени можно разделить на две группы: неорганические и органические. Неорганические вещества семян представлены водой и минеральными веществами. Даже самые сухие на вид семена содержат от 7 до 12% воды. В этом можно убедиться, нагревая семена в пробирке. При этом на стенках пробирки будут образовываться капли воды. При сжигании семян остается зола, представляющая собой смесь различных минеральных солей. Семена всех растений содержат органические вещества — белки, жиры и углеводы. Однако их процентное содержание в семенах различных растений не одинаково. В семенах одних растений накапливается большое количество крахмала (у пшеницы 66%, у ржи — 67%), в других — жиры (у льна до 48%, у клещевины до 70%), в третьих — белки (у гороха — 22-34%, у сои — 34-45%). В любом случае, в большем или меньшем количестве в семенах содержатся все органические вещества. Типичное семя состоит из покровов (кожуры), зародыша и питательной ткани.
Формируется обычно из покровов семязачатка. На поверхности семенной кожуры можно заметить маленькое отверстие — бывший семявход, или микропиле, а также рубчик — место бывшего прикрепления семязачатка в завязи. Главная функция семенной кожуры — защита зародыша от высыхания, механических повреждений и т.д. Кроме того, она способствует распространению семян.
Возникает из оплодотворенной яйцеклетки. Имеет диплоидный набор хромосом. Зародыш — главная часть семени, состоящая из корешка, стебелька, почечки с листочками и одной или двух семядолей (первых зародышевых листьев).
Запасающие ткани семени — эндосперм, перисперм, основная ткань семядолей. Эндосперм развивается из оплодотворенного центрального ядра зародышевого мешка (имеет триплоидный набор хромосом), перисперм — из нуцеллуса (имеет диплоидный набор хромосом). Они состоят из тонкостенных паренхимных клеток, обычно целиком заполненных питательными веществами. Типы семян В зависимости от места локализации запасных питательных веществ различают четыре типа семян: © семена с эндоспермом (пшеница); © семена с эндоспермом и периспермом (перец); © семена с периспермом (куколь); © семена без эндосперма и без перисперма (фасоль).
Рассмотрим строение семян с эндоспермом на примере зерновки пшеницы (рис. 51). В зерновке пшеницы различают три основные части: © семенную кожуру, сросшуюся с околоплодником; © зародыш семени; © питательную ткань — эндосперм. Эндосперм составляет основную часть семени. В центральной части эндосперма находятся триплоидные паренхимные клетки с запасом питательных веществ в виде зерен крахмала. По периферии эндосперм окружен клетками алейронового слоя с запасным белком в виде алейроновых зерен. К эндосперму прилежит зародыш. В зародыше хорошо различимы корешок, почечка с листочками, стебелек и одна семядоля, которая преобразована в щиток (вторая семядоля редуцирована). Щиток обеспечивает всасывание питательных веществ из эндосперма в период прорастания семени.
Снаружи семя покрыто толстой кожурой, на вогнутой стороне которой можно обнаружить рубчик и микропиле. Под кожурой располагается зародыш, состоящий из двух крупных семядолей, имеющих почковидную форму, и расположенных между ними зародышевого корешка, стебелька и почечки с листочками. После оплодотворения в процессе развития семени питательные вещества из эндосперма поглощаются зародышем и откладываются в виде крахмальных и алейроновых зерен в семядолях, поэтому семядоли сильно разрастаются. Условия прорастания семян Для прорастания семян необходимы определенные условия, главными из которых являются: © наличие воды; © доступ кислорода; © определенная температура; © живой зародыш семени. Перед прорастанием семяна должны набухнуть. При этом семена поглощают большое количество воды. Это необходимо для активизации ферментов, которые переводят запасные вещества семени в легкоусвояемую и доступную для зародыша форму. Семена некоторых растений нуждаются в скарификации. Скарификация — механическое повреждение водонепроницаемых покровов семени. Она может проводиться вручную или с помощью специальных механизмов. Прорастающие семена интенсивно дышат. Кислород необходим для осуществления окислительно-восстановительных процессов, стимулирующих деление и рост клеток зародыша. Температура имеет большое значение для прорастания семян, так как от нее зависит протекание биохимических процессов синтеза и разложения в прорастающих семенах. Семена многих растений способны прорастать в довольно широком диапазоне температур. Однако для каждого вида существуют определенные верхний и нижний пределы. Для большинства растений минимальное значение температуры — 0-5°С, а максимальное — 45-48°С. Оптимальной для прорастания семян многих растений считается температура 25-35°С. Семена многих растений умеренных и холодных климатических поясов не прорастают без промораживания. Поэтому в сельскохозяйственной практике применяют стратификацию — выдерживание семян во влажном песке при низких температурах. Этот прием ускоряет прорастание семян многих растений. Семена большинства растений безразличны к свету. Но есть растения, семена которых прорастают либо только на свету (салат, табак), либо только в темноте (некоторые вероники). Плод Плод — репродуктивный орган покрытосеменных, обеспечивающий семенное размножение. Функции плода: формирование, защита и распространение семян. Плоды характерны только для цветковых растений. Плод образуется из цветка, как правило, после оплодотворения. Главную роль в образовании плода играет гинецей. Нижняя часть пестика — завязь, содержащая семязачатки, разрастается за счет усиленного деления и увеличения размеров клеток, в которых накапливаются различные вещества (белки, крахмал, сахара, жирные кислоты, витамины и т.д.), и превращается в плод. Плод состоит из околоплодника и семян, число которых соответствует числу семязачатков. Иногда в образовании плода принимают участие и другие части цветка (тычинки, околоцветник, цветоложе). Околоплодник
© экзокарпий, или внеплодник — наружный слой околоплодника; © мезокарпий, или межплодник — средний слой околоплодника; © эндокарпий, или внутриплодник — внутренний слой околоплодника. У различных плодов слои околоплодника выражены по-разному. Например, у костянки (плод вишни) экзокарпий — тонкий кожистый, мезокарпий — толстый сочный и мясистый, эндокарпий — твердый деревянистый (косточка). У ореха лещины слои околоплодника практически неразличимы. Классификация плодов Общепринятой классификации плодов нет. Различные классификации строятся на основе следующих признаков: © Количество плодолистиков, образующих плод: ¨ простой плод — плод, образованный из завязи единственного пестика (горох, вишня, мак); ¨ сложный, или сборный, плод — плод, образованный из нескольких пестиков одного цветка (малина, ежевика, лютик). У некоторых растений может образовываться соплодие — более или менее сросшиеся в единое целое плоды, образовавшиеся из цветков одного соцветия (инжир, ананас, шелковица, сахарная свекла). © Консистенция околоплодника: ¨ сухие плоды — плоды с сухим, деревянистым или кожистым околоплодником (фасоль, лещина, белена); ¨ сочные плоды — плоды, у которых весь околоплодник или его часть сочная или мясистая (груша, смородина, арбуз). © Число семян: ¨ односеменные плоды (слива, пшеница); ¨ многосеменные плоды (крыжовник, дыня, помидор). © Особенностей вскрывания плодов: ¨ вскрывающиеся — плоды, которые после созревания семян растрескиваются по швам или по поверхности плодолистика (горох, бальзамин, фиалка); ¨ невскрывающиеся — плоды, из которых семена освобождаются после разрушения околоплодника (овес, одуванчик, лещина). Популярное:
|
Последнее изменение этой страницы: 2016-03-16; Просмотров: 1596; Нарушение авторского права страницы