Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ И ЕЕ ЗНАЧЕНИЕ В ДЕЯТЕЛЬНОСТИ ВРАЧА



ЛЕКЦИИ ДЛЯ СТУДЕНТОВ ЛЕЧЕБНОГО ФАКУЛЬТЕТА (ВЕСЕННИЙ СЕМЕСТР)

Лекция №1

ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ И ЕЕ ЗНАЧЕНИЕ В ДЕЯТЕЛЬНОСТИ ВРАЧА

МЕТОДЫ ИССЛЕДОВАНИЯ В МИКРОБИОЛОГИИ

Объектомизучения микробиологии являются микроорганизмы (микробы) - мельчайшие невидимые одноклеточные и многоклеточные существа, которые по многообразию не уступают представителям животного или растительного царства.

Особенности микробов:

- малые размеры (обычно их измеряют в микрометрах, 10-6 м, мкм);

- слабая морфологическая дифференцировка (относительно простое строение);

- быстрый рост и размножение (в благоприятных условиях одна особь за сутки

может дать потомство в сотни миллионов особей);

- высокая активность обменных процессов (быстрый синтез и разложение веществ,

получение энергии);

- повсеместное распространение (связано с выраженной способностью к адаптации).

Микробиология является комплексом наук. В зависимости от объекта исследования различают: бактериологию, вирусологию, микологию (объект - грибы), протозоологию (объект - простейшие). По целям изучения микробиология делится на общую, медицинскую, санитарную, ветеринарную, промышленную, космическую и др.

Задачи медицинской микробиологии:

1. Изучение биологии патогенных (болезнетворных) и нормальных для человека микробов.

2. Изучение роли микробов в возникновении, развитии инфекционных (заразных) болезней и формировании иммунного ответа макроорганизма

(" хозяина" ).

3. Разработка методов микробиологической диагностики (распознавания), специфического лечения и профилактики (предупреждения) инфекционных болезней человека.

Микробиологические исследования проводятся в специальных научных или практических лабораториях, где поддерживается противоэпидемический режим. Соблюдение особых правил работы в лаборатории преследует 2 цели: а) исключить возможность внутри-лабораторного заражения и выноса инфекции за пределы лаборатории; б) предотвратить микробное загрязнение воздуха, оборудования и материалов, снижающее качество анализа.

 

Классификация микроорганизмов

Микробы, как наиболее древняя форма жизни, в системе организмов представлены довольно широко. Они входят (наряду с другими организмами) в надцарство эукариотов, полностью составляют надцарство прокариотов и царство вирусов.

Прокариоты - это, как правило, одноклеточные организмы, бактерии, отличающиеся слабой морфологической дифференцировкой (доядерные); для них характерно:

- отсутствие окруженного мембраной ядра (носителем наследственности является нуклеоид - замкнутая в кольцо нить ДНК, единственная " бактериальная хромосома" );

- отсутствие органелл (митохондрий, хлоропластов, комплекса Гольджи и др.);

- размножение бинарным амитотическим делением (надвое);

- особое строение и состав клеточной стенки, малые размеры рибосом, своеобразные ферменты белкового синтеза.

Прокариоты разделены на 17 групп: спирохеты, несколько групп собственно бактерий (например, " грамположительные кокки", " спорообразующие грамположительные палочки и кокки", " грамотрицательные аэробные палочки и кокки" и др.), а также риккетсии и хламидии, микобактерии, микоплазмы. В основе деления прокариот на группы лежат: форма и строение клетки, отношение к окраске методом Грама, тип метаболизма и другие признаки. Внутри группы выделены более мелкие таксоны: порядок, семейство, род, вид (основной таксон). Название вида микроба, как правило, состоит из родового и видового названий. Например, один из возбудителей дизентерии носит название- Shigella sonnei.

Микроскопические эукариоты - это относительно более высоко организованные одноклеточные и многоклеточные организмы, имеющие сходство с клетками животных (простейшие) и растений (грибы). Для эукариот характерны:

- наличие истинного ядра, в котором находится набор линейных хромосом, распределяющихся в ходе митоза в дочерние клетки;

- различные органеллы (митохондрии, комплекс Гольджи, эндоплазматический ретикулюм и др.);

- рибосомы большего размера, чем у прокариот;

- способность к эндоцитозу (захвату частиц и растворенных веществ).

Вирусы - это мельчайшие неклеточные организмы, которые можно противопоставить всем другим существам. Основные свойства вирусов:

- отсутствие клеточного строения;

- отсутствие собственных метаболических систем (у вирусных частиц - вирионов нет обмена с внесшей средой);

- облигатный внутриклеточный паразитизм;

- наследственный материал (геном) представлен одним типом нуклеиновой кислоты (ДНК или РНК).

Методы исследования в микробиологии

Различают следующие основные методы: микроскопический, микробиологический, экспериментальный, иммунологический.

1. Микроскопический - изучение микробов в окрашенном и неокрашенном (нативном) состоянии с помощью различных типов микроскопов. Метод позволяет определить форму, размеры, расположение, структурны элементы и отношение к окраске микробов. Иногда по характерным морфологическим особенностям можно определить вид микроба (грибов, простейших, некоторых бактерий).

2. Микробиологический - (бактериологический, культурный) - посев материала на питательные среды для выделения чистой культуры и определения ее вида (идентификации). Культурой в микробиологии называют совокупность микроорганизмов. Чистая культура - скопление микробов одного вида, выращенных на питательной среде. Штамм - чистая культура, выделенная из конкретного источника в определенное время, (например, штамм Shigella flexneri №8, выделенный от больного К. 20 сентября). Клон - генетически однородная чистая культура, полученная в результате бесполого размножения I клетки (используется при изучении микробных популяций, в генетических экспериментах).

3. Экспериментальный (биологический) - заражение микробами лабораторных животных. Метод позволяет:

- выделить чистую культуру микробов, плохо растущих на питательных средах;

- изучить болезнетворные свойства микроба;

- получать иммунобиологические препараты для специфической профилактики, диагностики и лечения.

4. Иммунологический (в диагностике инфекций) - изучение ответных специфических реакций макроорганизма на контакт с микробами.

В ответ на поступление микробных частиц (антигенов, АГ) иммунная система организма вырабатывает специфические белковые молекулы -

антитела (AT), способные вступать с данным антигеном в специфическое

взаимодействие с образование комплекса АГ+АТ. Метод основан на выявлении таких комплексов. Выделяют 2 разновидности метода: серологический метод и аллергический метод. Серологический метод основан на выявлении AT в крови или других жидкостях с помощью известных микробных АГ(диагностикумов). Аллергический метод основан на выявлении повышенной чувствительности (аллергии) к повторному поступлению в организм микробного аллергена (АГ). Наличие иммунного ответа (в виде AT или аллергии) свидетельствует о предшествующей встрече с этим микробом: возможно, человек переболел соответствующей инфекцией раньше, был вакцинирован или болен в настоящее время.

Часто по образованию комплекса АГ+АТ с известными AT определяют вид чистой культуры неизвестного микроба, полученной в ходе исследования микробиологическим методом (идентификация по антигенной структуре).

 

Лекция №2

МОРФОЛОГИЯ И ФИЗИОЛОГИЯ БАКТЕРИЙ,

ГРИБОВ, ПРОСТЕЙШИХ.

Люминесцентный микроскоп

Принцип работы этого микроскопа основан на явлении люминесценции. Для получения изображения объектов их обрабатывают флюорохромами, которые при возбуждающем облучении коротковолновой частью спектра светятся цветами с большей длиной волны (зеленым, оранжевым и др.). В люминесцентном микроскопе изучают как живые, так и убитые микробы (с " сухой" или иммерсионной системами). Люминесцентная микроскопия позволяет получить контрастное цветное изображение, обнаружить малое количество микробов, изучить их структуру и химический состав, использовать метод иммунофлюоресценции.

Электронный микроскоп

Этот прибор отличается от световых микроскопов значительно большей разрешающей способностью (около 0, 001 мкм) за счет использования вместо света пучка электронов, а вместо стеклянных оптических - электромагнитных линз. В электронном микроскопе изучают вирусы, ультраструктуру убитых макроорганизмов.

Лекция №3

Лекция №4

ГЕНЕТИКА БАКТЕРИЙ

 

Микроорганизмы послужили удобной моделью для генетических исследований, приведших к важнейшим открытиям 20 века в биологии: показано, что материальным носителем (основой) наследственности являются нуклеиновые кислоты - ДНК и РНК; установлено детальное строение хромосомы; расшифрованы механизмы: генетического обмена и его регуляции, достижения генетики микроорганизмов послужили основой для становления и развития новой перспективной отрасли – биотехнологии. Она призвана использовать свойства микробов и клеточных культур, биологических процессов в производстве: биологически-активных веществ (антибиотиков, гормонов, белков, аминокислот ), энергоносителей, полезных новых видов микробов, сортов растений, видов животных, эффективных вакцин, а также в борьбе с загрязнением окружающей среды и болезнями растений.

Микробы, как объекты генетических исследований, обладают рядом преимуществ: бактерии содержат гаплоидный набор генов, поэтому изменения их генотипа с неизбежностью влекут за собой изменение фенотипа; для них характерно быстрое размножение и огромная численность потомства (быстрая смена поколений); работа с микробами не требует больших затрат.

 

Лекция №5

ИНФЕКЦИЯ

СЕПСИС

Различают несколько форм взаимодействия /симбиоза/ двух биологических видов, в том числе паразитизм, когда один живёт за счет другого, нанося ему вред / +- /. Паразит, как правило, зависит от хозяина. Частным случаем паразитизма является инфекция.

Инфекция /инфекционный процесс/ - это закономерно развивающийся процесс взаимодействия микроба и восприимчивого макроорганизма, сопровождающийся физиологическими и патологическими реакциями, нарушением гомеостаза и функций организма.

Инфекционная болезнь - крайняя /по выраженности/ форма инфекции.

Лекция №6

ИММУННОЛОГИЯ

ВИДЫ ИММУНИТЕТА

Виды и Формы иммунитета.

Различают, иммунитет тканевой /обусловливает несовместимость тканей/ и антиинфекционный / противомикробный и противопаразитарный /.

Антиинфекционный иммунитет включает: естественную резистентность / неспецифическая защита / и приобретённый иммунитет / специфическая защита /.

Естественная резистентность представлена:

а/ видовой невосприимчивостью /невосприимчивость к микробам, патогенным для других видов/,

б/ невосприимчивостью при генетических отклонениях от нормы /например,

люди с серповидной формой эритроцитов не болеют малярией/,

в/ собственно естественной резистентностью.

Приобретенный иммунитет имеет следующие формы:

I/ активный /в его создании принимает участие собственная иммунная система/, в том числе:

а/ постинфекционный /после перенесённого заболевания/

б/ поствакцинальный /после введения вакцинного препарата/,

2/ пассивный /когда в организм вводятся готовые специфические антитела

или иммуноциты/, в том числе:

а/ плацентарный /передаваемые от матери через плаценту плоду антитела/

б/ постсывороточный /после введения иммунной сыворотки/.

Формы 1а и 2а являются естественным иммунитетом, формы 16 и 26 - искусственным. По направленности приобретенный иммунитет /формы 1а, б и 2а, б/ может быть антитоксическим /защита от чужеродного яда/ и антимикробным /невосприимчивость к микробам/. В свою очередь антимикробный иммунитет /по присутствию или отсутствию в организме живых микробов/ делят на нестерильный /инфекционный/ и стерильный.

Особым видом защиты является местный иммунитет, которому свойственны черты и естественной резистентности и приобретенного иммунитета.

Признаки естественной резистентности:

1. Наследуется, являясь видовым признаком.

2. Отличается относительной стойкостью в течение жизни.

3. Формирование не связано с поступлением антигена /чужеродных агентов/

4. Механизм защиты однотипен вне зависимости от вида возбудителя /неспецифичность защиты/

Признаки приобретённого иммунитета:

1. Приобретается в течение жизни индивидуума /не наследуется/.

2. Нестоек во времени.

3. Строго специфичен /направлен против того возбудителя или яда, к которому иммунизирован индивидуум/.

Лекция №7

АНТИГЕНЫ АНТИТЕЛА

Специфические механизмы защиты /приобретенный иммунитет, иммунный ответ/ предполагают распознавание клетками иммунной системы генетически чужеродных субстанций /антигенов/ и специфическое реагирование на них, которое может проявляться в виде нескольких реакций:

- образование антител /иммуноглобулинов/

- иммунологическая память

- иммунологическая толерантность /специфическая безответность/

- гиперчувствительность немедленного типа /аллергия/

- гиперчувствительность замедленного типа /аллергия/

- идиотип-антиидиотипическое взаимодействие. Эти реакции и в целом иммунный ответ являются функцией иммунной системы.

Иммунная система - это совокупность всех лимфоидных органов и клеток, образующих единый диффузный орган иммунитета. Клетки этого органа постоянно циркулируют с кровотоком по всему телу. Главной клеткой иммунной системы является лимфоцит. Центральные органы иммунитета - тимус /вилочковая железа/ и костный мозг. В них происходит дифференциация, т.е. развитие и " обучение" лимфоцитов, которые становятся, соответственно, Т-лимфоцитами и В-лимфоцитами. Периферические органы иммунитета - селезёнка, лимфоузлы, лимфатические фолликулы /бляшки/, циркулирующие в крови моноциты. В этих органах происходит формирование конкретного иммунного ответа. Иммунный ответ осуществляют иммуно-компетентные клетки /иммуноциты/, т.е. Т-лимфоциты, В-лимфоциты и макрофаги, в ходе их кооперации с участием медиаторов /химических посредников/.

Различают гуморальный иммунный ответ /выработка антител, формирование аллергии немедленного типа/ и клеточный иммунный ответ, связанный с накоплением сенсибилизированных Т-лимфоцитов /гиперчувствительность замедленного типа и др./.

Иммунный ответ контролируют гены I-области 6-й пары хромосом человека. Пусковым механизмом для любой иммунологической реакции является контакт иммунной системы с антигеном.

Антигенами называют вещества, которые несут признаки генетической чужеродности и при введении в организм вызывают развитие иммунологических реакций. Если вещество вызывает развитие аллергии, его называют аллергеном. Условия, при которых вещество может быть антигеном:

I/ чужеродность /по отношению к иммунной системе конкретного организма/

2/ достаточно большая молекулярная масса /более 10 килодальтон/

3/ достаточно сложная структура

4/ жесткое расположение детерминантных групп в молекуле

5/ хорошая растворимость во внутренней среде организма.

Антигенами являются: белки различного происхождения, сложные полисахариды, липополисахариды, комплексы белков с липидами или нуклеиновыми кислотами. Не являются антигенами: простые неорганические и органические соединения, липиды, чистые препараты нуклеиновых кислот. Для полноценных антигенов характерны следующие свойства: чужеродность, антигенность, иммуногенность и специфичность. Чужеродность - признак /" печать" / работы чужого генома /организма/. Он появляется при высокой уровне организации биомолекул /например, отсутствует у аминокислот или пептидов, но появляется у сложных белков/. " Чужеродность относительна /кроличий белок альбумин не чужероден для кролика, но чужероден для мыши или морской свинки/. Антигенность - способность вызывать иммунологические реакции большей или меньшей степени выраженности /например, глобулин обладает большей антигенностью, чем альбумин, т.к. после введения глобулина образуется больше антител/. Иммуногенность - способность вызывать формирование иммунитета /невосприимчивости к микробам или токсинам/. Например, антигены возбудителя брюшного тифа или кори более иммуногенны, чем антигены возбудителя дизентерии, после которой нет стойкого иммунитета и бывают повторные заболевания. Специфичность - это то, чем антигены отличаются друг от друга. Она определяется их химической структурой. Наиболее значимые для специфичности химические группы /антигенные детерминанты/: обладают гидрофильностью, концентрируют определенный заряд и ориентированы наружу. Количество антигенных детерминант /валентностей/, присоединяющих I молекулу антитела, у разных антигенов колеблется от 10 до 1000 и более.

По специфичности различают следующие типы антигенов:

I/ видовой антиген, определяется у всех представителей данного вида и отсутствует у представителей других видов /у микробов, животных, человека его можно выявить в реакции с видоспецифическими иммунными

сыворотками/,

2/ типовой антиген, обусловливает различие среди особей одного вида; например, возбудитель дизентерии Флекснера имеет 6 антигенных вариантов - сероваров. У человека различают более 70 изоантигенов, обусловливающих различия по группам крови, резус-фактору, антигенам тканевой совместимости. Несовпадение по изоантигенам донора и реципиента может быть причиной реакции отторжения пересаженной ткани или органа,

3/ гетерогенный антиген, является общим для представителей разных видов; так, у возбудителя чумы и других микробов есть общие антигены с тканями человека /антигенная мимкрия/; общие антигены могут быть у представителей разных видов микробов, входящих в одно семейство, или весьма отделённых /групповые антигены/,

4/ аутоантигены - это вещества, способные иммунизировать тот организм

из которого они получены. Нормальными аутоантигенами являются ткани

организма, которые в норме не соприкасаются с иммунной системой

/мозг, хрусталик глаза, семенники/; они в случае травмы могут иммунизировать организм. Патологическими аутоантигенами могут быть патологически измененные ткани после обморожения, ожога, облучения, действия микробных токсинов.

Все антигены можно разделить на полноценные, обладающие всеми свойствами антигена, и неполноценные /гаптены/. Гаптенами называют вещества, не способные при введении в организм вызывать иммунологические реакции, но вступающие в специфические реакции с готовыми антителами или иммуноцитами. Гаптены становятся полноценными антигенами после укрупнения молекулы /соединения с белком, полисахаридом или другим носителем/. Гаптенами могут быть: несложные полипептиды, липидн, нуклеиновые кислоты, простые органические вещества, антибиотики, формальдегид и др. Простые гаптены при взаимодействии с соответствующими антителами не дают видимой реакции осаждения /преципитации/, а сложные гаптены - дают /выпадает осадок/. Проникая в организм, гаптены могут соединяться с его белками /свободными или в составе клеток/ и становиться полноценными антигенами, иммунизируя организм. Это может приводить к патологическим состояниям /контактные дерматиты у рабочих на производстве антибиотиков или витаминов, аллергические реакции после введения лекарств; если гаптен имеет сродство к клеткам крови, может развиться анемия, лейкопения или пурпура/.

Микробные антигены. К ним относят: целые микробные клетки /убитые и живые/, токсины, продукты распада клеток, извлекаемые из клеток фракции. В антигенной структуре микробной клетки различают: Н-антиген /белковый антиген жгутиков/, К-антиген /поверхностный белковый или полисахаридный антиген оболочки/, О-антиген /липополисахарид клеточной стенки, соматический антиген/, цитоплазматические антигены. Протективным антигеном микроба называют антиген с наибольшей антигенностью и иммуногенностью, который при введении способствует формированию стойкого иммунитета. Поэтому протективные антигены вводят в состав вакцин. Цели изучения микробных антигенов:

- определение вида и варианта /идентификация/ возбудителя по антигенной структуре,

- быстрая индикация /обнаружение/ микробов в исследуемом материале иммунологическими методами /при помощи иммуноглобулиновых препаратов

- конструирование антигенных препаратов /диагностикумов, аллергенов/ для диагностики инфекционных заболеваний по иммунному ответу организма /серодиагностика - обнаружение антител, аллергодиагностика - обнаружение сенсибилизированных лимфоцитов,

- создание вакцин и сывороток для профилактики и лечения инфекций.

Препараты микробных антигенов можно получить из культуральной жидкости /секретируемые/ или путем разного рода воздействий на клетки /нагреванием - 0-антиген, обработкой формалином - Н-антиген; используют также ультразвуковую дезинтеграцию, фракционирование, химическую экстракцию и т.д./. Антигены можно создать в лабораторных условиях путём химического синтеза /синтетические антигены/.

Антитела - это белки животного происхождения, образуемые лимфоидными органами позвоночных при внедрении антигенов и способные вступать с ними в специфическое взаимодействие. Они отличаются особым строением и свойствами, входят в состав гамма-глобулиновой фракции сыворотки крови и поэтому их называют иммуноглобулинами.

Свойства антител: специфичность и ряд физико-химических особенностей Специфичность - способность вступать в реакцию только с тем антигеном, который вызвал их образование.

Физико-химические свойства; а/ относительная термостабильность, б/ относительная устойчивость к действию протеаз, в/ устойчивость к денатурации этанолом при 0-4°С, г/ осаждаются без денатурации нейтральными солями /сульфатом аммония и др./. Эти свойства используются при получении иммуноглобулиновых препаратов.

Различают 5 классов иммуноглобулинов (Ig ), отличающихся по массе /150 - 900 КД/, физико-химическим свойствам, строению и функциональным особенностям: G, М, А, Е, Д. Основную массу сывороточных иммуноглобулинов составляют антитела трёх классов: IgG /70-80%/, IgA /10-15%/ и IgM /5-10%/; остальные / IgE и IgD / - 0, 2 %.

Строение иммуногдобулина /IgG, мономер/. IgG состоит из 4 полипептидных цепей, соединенных дисульфидными связями: пары идентичных тяжёлых /50 КД/ и пары идентичных лёгких /23 КД/ цепей с шарнирным участком в середине молекулы. При обработке протеолитическим ферментом папаином IgG распадается на 3 фрагмента: 2 идентичных с активными центрами /антидетерминантными группами/ - Fаb1 и Fаb2, способных вступать в реакцию с антигеном, и фрагмент Fс /кристаллизующийся, константный/, не вступающий в связь с антигеном. Свободные концы /активные центры/ обоих Fab фрагментов составлены из вариабельных участков - тяжелой и легкой цепи. Конфигурация активного центра повторяет пространственную структуру антигенной детерминанты в виде полости /как перчатка повторяет форму руки/. Остальные участки молекулы константны т.е. имеют одинаковые аминокислотные последовательности у антител разной специфичности. Этими участками /Fс/ антитела могут адсорбироваться, например, на специальных рецепторах иммуноцитов.

IgG двухвалентны – имеют 2 активных центра, IgM пятивалентны – имеют 5 активных центров/ пентамер /.

Краткая характеристика классов иммуноглобулинов.

IgC - сывороточные антитела /150 КД/, в большом количестве образуются при повторном поступлении антигена, проходят через плаценту, высокоспецифичны, нейтрализуют микробные частицы и токсины, взаимодействуют с гаптенами.

IgM - сывороточные антитела /900 КД/, появляющиеся в 1-е дни после 1-го контакта с антигеном, менее специфичны, чем IgG, не проходят через плаценту, но могут быть в секретах на слизистых оболочках, активно связывают комплемент, участвуют в лизисе клеток.

IgA - содержатся в сыворотке крови /мономер, 170 КД/ и в секретах /молоке, на " слизистых оболочках - димер, 430 КД/. При прохождении /из кровеносного русла/ через эпителий они приобретают " секреторный компонент", который предохраняет молекулу от разрушения ферментами секретов. IgA имеет большое значение в создании местного иммунитета, препятствуя адгезии микробов к эпителиоцитам и колонизации ими слизистых оболочек.

IgE - сывороточные термолабильные антитела-реагины /190 КД/; обладают цитофильностью /фиксируются на клетках/, способствуя развитию аллергических реакций немедленного типа; не проходят через плаценту; усиливают проницаемость сосудов.

IgD - сывороточные термолабильные антитела /180 КД/, функции которых

уточняются.

Различают полные и неполные антитела. Полные антитела имеют 2 или более валентности и образуют с антигеном комплексные соединения /сетевые структуры/. Так как I молекула антитела может связываться с 2 и более антигенами, то приводит к изменению физико-химического состояния антигена и видимым феноменам - агглютинации /образуются хлопья/, преципитации /выпадает осадок/ и др. Неполные антитела /блокирущие/ моновалентны, т.к. имеют I активный центр. Они не дают сетевых структур и не, обнаруживаются в прямых реакциях иммунитета /их обнаруживают непрямыми методами - путём нейтрализации антигена или в антиглобулиновом тесте Кумбса/.

Динамика накопления антител различна в зависимости от того, первично или вторично поступает данный антиген в организм. При первичном иммунном ответе антитела могут быть обнаружены в крови через 3-4 дня после контакта с антигеном. Это латентная /индуктивная/ фаза иммуногенеза - период скрытого антигенного раздражения и кооперативного взаимодействия иммуноцитов, в результате чего из В-лимфоцитов образуются и накапливаются плазматические клетки, продуцирующие антитела /продуктивная фаза иммуногенеза/. Максимальное количество антител отмечается на 7-20 день; после этого наблюдается снижение титра до минимума, который наступает через 2-3 месяца. С начала продуктивной фазы (Образуются IgM, затем дополнительно продуцируются IgG и IgA, Вторичный иммунный ответ имеет следующие отличия: а/ укороченный латентный период, б/ более быстрый подъём концентрации антител,

в/ более высокие значения максимальных титров /в 3 и более раз/

г/ вырабатываемые антитела относятся к IgG. Способность к такому усиленному ответу сохраняется до нескольких лет и является одним из проявлений иммунологической памяти, которая поддерживается в организме за счет сенсибилизированных Т-лимфоцитов. Эти закономерности иммуногенеза лежат в основе современных методов вакцинации /ревакцинации/.

 

Реакции иммунитета

Реакциями иммунитета /серологическими реакциями/ называют действие между антигенами и антителами, ведущее к образованию иммунного комплекса /антиген-антитело/. Они протекают, как правило, в 2 фазы в присутствии дополнительного фактора /электролит, комплемент, фагоцит или др./Специфическая фаза /невидимая: " химическая" / происходит очень быстро и характеризуется соединением детерминантной группы антигена с активным центром антитела. В результате образуется комплекс, утрачивающий растворимость в изотонических растворах /например, в растворе хлорида натрия, ИХН/. Неспецифическая фаза /видимая, " коллоидная" / наступает через несколько минут или часов и характеризуется укрупнением комплекса антиген+антитело с изменением его физических свойств. Эта фаза сопровождается видимыми феноменами: выпадением осадка, образованием хлопьев, просветлением взвеси, остановкой движения частиц и др.

Реакции иммунитета высокоспецифичны и их широко применяют на практике

для серодиагностики инфекций /по обнаружению антимикробных антител в сыворотке крови/, определения вида и варианта микроба по антигенной структуре, определения других антигенов / аллергенов, гормонов, биологических образцов разного происхождения /. Области применения peaкций иммунитета: диагностика инфекционных и неинфекционных заболеваний, фармация, санитарно-ветеринарная служба, трансплантация органов и тканей /в т.ч. крови/, судебная медицина.

Реакция агглютинации /РА/ - это взаимодействие корпускулярного антигена /взвеси бактерий, других " клеток или частиц/ и антител-агглютинов в изотоническом растворе с образованием и осаждением агглютината /хлопьев из склеившихся частиц/. Eе ставят несколькими методами. Быстрая ориентировочная РА ставится на предметном стекле и учитывается в течение 2-3 мин после смешивания ингредиентов и покачивания стекла. Более надежные результаты даёт использование адсорбированных и монорецепторных сывороток, что позволяет избежать неспецифических реакций, например, с родственными бактериями за счет общих антигенов. Развёрнутая /объёмная/ РА более точна, она ставится в пробирках и учитывается через сутки. В ряду пробирок готовят последовательные двукратные разведения сыворотки в ИХН - 1: 50, 1: 100, 1: 200, 1: 400 и т.д. Затем в каждую пробирку добавляют одинаковое количество взвеси клеток, встряхивают и ставят при комнатной температуре. Результат учитывают по характеру осадка и просветлению надосадочной жидкости. Титром агглютинирующей сыворотки считают её максимальное разведение, при котором наблюдается выраженная реакция. РА используют для идентификации микробов по антигенной структуре, для определения антимикробных антител и их титра в сыворотке при серодиагностике инфекционных заболеваний, при определении группы крови и т.п.

Реакция пассивной /непрямой/ гемагглютинании /РПГА/ является разновидностью непрямых агглютинационных реакций, наряду с реакцией коагглютинации, агглютинации латекса и др. Эти реакции более чувствительны, чем РА, т.к. предварительно стандартный антиген /или антитело/ присоединяют к корпускулярному носителю - эритроцитам, убитым микробам или частицам латекса, получая, соответственно, эритроцитарные, коагглютинирующие или латексные диагностикумы /антигенные или иммуноглобулиновые/. РПГА с антигенным эритроцитарным диагностикумом ставят в пробирках или лунках планшета с двукратными разведёниями сыворотки /например, с целью серодиагностики инфекций или выявления напряжённости иммунитета - по титру антител/. При положительной реакции через 4-20 ч формируется рыхлый осадок эритроцитов на всей площади дна пробирки или лунки При отрицательной реакции эритроциты образуют плотный осадок в центре /в виде пуговицы/. РПГА с иммуноглобулиновыми диагностикумами учитывают так же, но её ставят для быстрой индикаций возбудителя в исследуемом материале или его идентификации по антигенной структуре. Это метод экспресс-диагностики.

Реакция преципитации /РП/- это выпадение в осадок растворимого антигена при взаимодействии с соответствующими антителами-преципитинами в присутствии электролита. Антигеном может быть прозрачный раствор белка или гаптена, различные экстракты. РП ставят несколькими методами. Метод кольцепреципитации: на диагностическую сыворотку с известными преципитинами в узкой пробирке сверху осторожно наслаивают раствор антигена и в течение часа учитывают положительную реакцию /на границе жидкостей образуется белый диск преципитата и постепенно оседает/. Так определяют, например, антиген возбудителя сибирской язвы в разных материалах. Метод преципитации в капилляре: стеклянный капилляр диаметром I мм сначала опускают на 1/3 в диагностическую сыворотку, а затем на 1/3 - в раствор антигена, переворачивают несколько раз и оставляют в вертикальном положении на сутки. Зёрна преципитата оседают и собираются столбиками на нижнем мениске жидкости в капилляре. Так определяют, например, С-реактивный белок /СРБ/ при аутоиммунных заболеваниях, ревматизме, туберкулёзе, инфаркте миокарда /диагностическую сыворотку с преципитинами к СРВ получают путем иммунизации кроликов/. Методы диффузной преципитации в агаровом геле; растворы антигенов и антител помещают в разные места прозрачного геля, из которых они диффундируют, образуя при встрече преципитат в виде белых полос или линий. В методе простой диффузии антиген диффундирует в агаре, содержащем определенную концентрацию диагностической сыворотки, которую предварительно вводили в не застывший агар В методе двойной диффузии антигены и антитела из лунок в агаре диффундируют навстречу друг другу в нейтральном слое агара.

В методе иммуноэлектрофореза раствор неоднородного антигена сначала подвергают фракционированию в агаровом геле под действием постоянного тока а затем канавку в геле, сделанную сбоку от линии распределения фракций заполняют сывороткой /антителами/. В результате двойной диффузии в геле образуется специфический рисунок из дуг к линий преципитата, вид которого зависит от количества и качества фракций антигена и антител.

РП обладает высокой чувствительностью, она позволяет выявлять белковые антигены в разведениях 1: 100000 и выше, т.е. недоступных для обнаружения химическим путём. Титром преципитирующей сыворотки считают наибольшее разведение антигена, дающее преципитацию при контакте с ней. Такая особенность связана с мелкодисперсным состоянием антигена, малыми размерами его молекул. РП применяют для индикации микробных антигенов в материале от больных и из внешней среды, определения иммуноглобулинов разных классов /диагностика и профилактика инфекций и иммунодефицитов/ для выявления фальсификации пищевых продуктов /санитарная практика/, для определения видовой принадлежности крови и других биологических примесей /судебно-медицинская практика/.

Реакция нейтрализации токсина антитоксином /РН/ - серологическая реакция между микробным экзотоксином и антителами, приводящая к инактивации ядовитого действия токсина. Её ставят в опытах на животных: для обнаружения экзотоксина в исследуемом материале; для определения титра антитоксина в иммунной сыворотке. Например, материал, содержащий экзотоксин, смешивают с известной диагностической сывороткой /в избытке/, выдерживают 30 мин и вводят животным. Если сыворотка нейтрализует токсин, отравления и гибели животных нет. Если токсин не соответствует антитоксинам сыворотки, животные погибают /как и в контрольной группе животных, получивших тот же материал без сыворотки/. Для определения антитоксической сыворотки ставят такой же опыт, но берут стандартный экзотоксин известной, силы и смешивают с сывороткой в разных соотношениях. Определяют наименьшее количество сыворотки, нейтрализующее определенное число минимальных летальных доз-ДЛМ токсина /это количество соответствует I антитоксической единице, АЕ сыворотки/. Титр сыворотки выражают количеством АЕ или ME /международных антитоксических единиц/ в I мл сыворотки. Например, I ME противодифтерийной сыворотки нейтрализует 100 ДЛМ дифтерийного токсина для морской свинки.

Титрование антитоксических сывороток проводят и в пробирках - в реакции флоккуляции /разновидность РП/. Оно основано на том, что при смешивании экзотоксина или анатоксина /т.е. белкового антигена/ с титруемой сывороткой наиболее раннее помутнение /инициальная флоккуляция/ наблюдается в пробирке с эквивалентным соотношением токсина /анатоксина/ и антитоксина / т.е. I TE(Lf): I AE(ME) /.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 1555; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.066 с.)
Главная | Случайная страница | Обратная связь