Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ.Стр 1 из 11Следующая ⇒
УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ.
Статор синхронной машины имеет такое же устройство, как и статор асинхронной машины. Трехфазная или в общем случае m-фазная обмотка машины выполняется с таким же числом полюсов, как и ротор, и называется так же обмоткой. Сердечник ротора вместе с обмоткой называется также якорем. На рис. условно показаны только выводные концы А, В, С обмотки статора. Рис 1, а. Ротор синхронной машины имеет обмотку возбуждения, питаемую через два контактных кольца и щетки постоянным током от Рис 1, б постороннего источника. В качестве источника чаще всего служит генератор постоянного тока относительно небольшой мощности (0, 3—3, 0% от мощности синхронной машины), который называется возбудителем и устанавливается обычно на одном валу с синхронной машиной. Назначение обмотки возбуждения — создание в машине первичного магнитного поля. Ротор вместе со своей обмоткой возбуждения называется также индуктором. При изготовлении синхронных машин принимаются меры к тому, чтобы распределение индукции поля возбуждения вдоль окружности статора было по возможности близко к синусоидальному. Если ротор синхронной машины привести во вращение с некоторой скоростью п об/сек и возбудить его, то поток возбуждения Фf будет пересекать проводники обмотки статора и в фазах последней будут индуктироваться э. д. с. с частотой
Э. д. с. статора составляют симметричную трехфазную систему э. д. с., и при подключении к обмотке статора симметричной нагрузки эта обмотка нагрузится симметричной системой токов. Машина при этом будет работать в режиме генератора. При нагрузке обмотка статора создает такое же по своему характеру вращающееся магнитное поле, как и обмотка статора асинхронной машины. Это поле статора вращается в направлении вращения ротора со скоростью об/сек. Если подставить сюда f1 из формулы, то получим . Поля статора и ротора вращаются с одинаковой скоростью и образуют, таким образом, общее вращающееся поле, как и в асинхронной машине. Поле статора (якоря) оказывает воздействие на поле ротора (индуктора) и называется в связи с этим также полем реакции якоря. Синхронная машина может работать и в качестве двигателя, если подвести к обмотке ее статора трехфазный ток из сети. В этом случае в результате взаимодействия магнитных полей статора и ротора поле статора увлекает за собой ротор. При этом ротор вращается в ту же сторону и с такой же скоростью, как и поле статора. Из формулы следует, что чем больше число пар полюсов синхронной машины р, тем меньше должна быть ее скорость вращения f1 для получения заданной частоты f1. По своей конструкции синхронные машины подразделяются на явнополюсные (Рис 1, а) и неявнополюсные (Рис 1, б).
Магнитные поля и параметры Успокоительной обмотки
В нормальных установившихся режимах работы многофазной синхронной машины основная гармоника н. с. реакции якоря вращается синхронно с ротором, неизменна по величине и поэтому токов в успокоительной или пусковой обмотке, расположенной в полюсных наконечниках, не индуктирует. При этих условиях относительно небольшие токи в стержнях успокоительной обмотки индуктируются только в результате действия высших гармоник н. с. обмотки якоря и зубцовых пульсации магнитного поля. Эти токи вызывают добавочные потерн, которые учитываются при определении к. п. д. Однако при неустановившихся, несимметричных и других особых режимах работы потоки основных гармоник поля реакции якоря Фad и Фqd изменяются или пульсируют во времени и индуктируют в успокоительной обмотке значительные по величине токи. Распределение этих токов в стержнях успокоительной или пусковой обмотки показано на рис.1 а и 2 а.
Рис 1.
Рис 2.
Эти токи создают в воздушном зазоре магнитные поля определенной формы, которые можно разложить на основную и высшие гармоники (рис.1б и 2б). Основные гармоники поля успокоительной обмотки обусловливают явление взаимной индукции с обмоткой якоря, а высшие гармоники образуют поле дифференциального рассеяния успокоительной обмотки. Кроме того, существуют также поля пазового и лобового рассеяния успокоительной обмотки. Ротор явнополюсной синхронной машины в магнитном отношении несимметричен. Кроме того, его успокоительная или пусковая обмотка несимметрична и в электрическом отношении, так как контуры токов, составляемые стержнями и участками торцевых замыкающих колец этой обмотки, различны для токов, индуктируемых продольным и поперечным потоками реакции якоря (рис. 1а и 2а). Поэтому количественные соотношения, характеризующие электромагнитные процессы, для осей d и q различны. Для поля воздушного зазора это проявляется в том, что кривые поля имеют различный вид (рис. 1б и 2б). Токи в отдельных стержнях на рис. 1 а также различны. Это же справедливо и для рис. 2а. Вследствие указанной магнитной и электрической несимметрии, строго говоря, вместо единой успокоительной обмотки необходимо рассматривать каждый контур тока на рис. 1а или 2а как отдельную обмотку или отдельную цепь тока. Для каждого такого контура по отдельности можно составить уравнение напряжения или второе уравнение Кирхгофа, причем эти уравнения будут независимы друг от друга, а сопротивления и индуктивности каждого контура различны. В уточненной теории переходных процессов и других особых режимов действие успокоительной обмотки учитывается именно так. Однако для большинства практических целей задачу можно упростить и рассматривать по каждой оси одну эквивалентную успокоительную обмотку, с эквивалентными токами Iуд, Iyq и эквивалентными параметрами. Можно считать, что такие эквивалентные обмотки представляют собой коротко-замкнутые витки с полным шагом (рис. 3). Рис 3. Активные сопротивления и индуктивности Lyd, Lyq эквивалентных успокоительных обмоток по разным осям различны. Токи и параметры успокоительных обмоток также можно привести к обмотке якоря. При этом взаимная индуктивность с обмоткой якоря для продольной оси будет равна Lad, а для поперечной оси Laq. Полные приведенные собственные индуктивности успокоительной обмотки будут: где — приведенные индуктивности рассеяния успокоительной обмотки соответственно для продольной и поперечной осей. Очевидно, что . Вместо полной успокоительной обмотки иногда применяют также неполную успокоительную обмотку (рис. 4), Рис 4. которая не имеет междуполюсных соединений. Отсутствие междуполюсных соединений не влияет на величину и распределение токов, а также на величину параметров успокоительной обмотки по продольной оси. Однако действие такой обмотки по поперечной оси значительно ослабляется, так как активное сопротивление ryd и индуктивность рассеяния увеличиваются, а ток эквивалентной обмотки , уменьшается. Поэтому неполные успокоительные обмотки применяются редко. Отметим, что в каждом реальном стержне успокоительной обмотки протекает ток, равный сумме продольного и поперечного токов стержня, и ввиду разных направлений этих токов суммарные токи стержней, расположенных симметрично относительно центра полюсного наконечника, различны. Неявнополюсные синхронные машины имеют массивный ротор, обычно лишены специальной успокоительной обмотки, и роль последней играет само тело ротора. Это же справедливо для явнополюсных машин с массивными полюсами. Действие массивного ротора и массивных полюсов также можно заменить действием эквивалентных успокоительных обмоток. Для неявнополюсной машины, имеющей цилиндрический ротор, параметры таких обмоток для обеих осей можно принять одинаковым. Строго говоря, это же справедливо и для обычных успокоительных и пусковых обмоток, так как сечение стержней этих обмоток достаточно велико. Некоторое действие оказывают также вихревые токи, индуктируемые при изменении Фad Фaq в элементах магнитной цепи ротора явнополюсной машины, имеющей полюсы из листовой стали. Это эквивалентно наличию некоторой дополнительной успокоительной обмотки. Однако этот эффект мал и обычно не учитывается. Следует отметить также, что приведенная взаимная индуктивность между обмоткой возбуждения и успокоительной больше, а рассеяние между ними меньше, чем между этими двумя обмотками и обмоткой якоря. Это обусловлено тем, что указанные две обмотки расположены на индукторе поблизости и неподвижны относительно друг друга. Ввиду последнего обстоятельства взаимная индуктивность обмоток возбуждения и успокоительной обусловлена также высшими гармониками их полей в воздушном зазоре. То же самое характерно и для двухклеточного асинхронного двигателя, в котором взаимная индуктивность между обмотками ротора также больше, чем между обмотками ротора и обмоткой статора. Однако в синхронных машинах этим обстоятельством часто пренебрегают. Необходимо также подчеркнуть, что взаимная индукция между поперечной успокоительной обмоткой и обмоткой возбуждения отсутствует. Опытное определение
Опытные х. х. х. и х. к. з. (рис.1) позволяют определить опытное значение продольного синхронного сопротивления xd.
Обычно находят ненасыщенное значение этого сопротивления , которое в отличие от насыщенного значения xd для каждой машины вполне определенное. Чтобы определить , для какого-либо значения тока возбуждения, например if = ОА (рис. 1), по спрямленной ненасыщенной х. х. х. 3 находят и по х. к. з. 2 — токI, после чего вычисляют Если и I выражены в относительных единицах, то и получается в этих же единицах. будет определять насыщенное значение хд при таком насыщении магнитной цепи, которое соответствует данному значению Е. Кривая 4 (рис.) представляет собой насыщенные значения xd = f(if).
Внешняя характеристика
Внешняя характеристика определяет зависимость U = f (/) при if = const. cos = const, f = /„ и показывает, как изменяется напряжение машины U при изменении величины нагрузки и неизменном токе возбуждения. Внешняя характеристика снимается следующим образом: при if = const посредством изменения момента или мощности приводного двигателя изменяют ступенями активную мощность генератора Р и при каждом значении Р с помощью регулируемого трансформатора РТ изменяют U на зажимах генератора так, что достигается необходимое значение cos . Вид внешних характеристик при разных характерах нагрузки показан на рис. 1, причем предполагается, что в каждом случае величина тока возбуждения отрегулирована так, что при I=Iн„ также U = Uн. Отметим, что величина If при номинальной нагрузке называется номинальным током возбуждения. {Вид внешних характеристик синхронного генератора объясняется характером действия реакции якоря. При отстающем токе (кривая 1 на рис. 1) существует значительная продольная размагничивающая реакция якоря), которая растет с увеличением тока нагрузки I, и поэтому U с увеличением I уменьшается. При чисто активной нагрузке (кривая 2 на рис. 1) также имеется продольная размагничивающая реакция якоря, но угол между Е и I меньше, чем в предыдущем случае, поэтому продольная размагничивающая реакция якоря слабее и уменьшение U с увеличением I происходит медленнее. При опережающем токе (кривая 3 на рис. 1) возникает продольная
Рис 1.а намагничивающая реакция якоря и поэтому с увеличением I напряжение U растет. Следует отметить, что значения if для трех характеристик различны и наибольшее if соответствует характеристике 1.
Нагрузочная характеристика
Нагрузочная характеристика определяет зависимость U = f(if) при I = const, cos = const и I = const и показывает, как изменяется напряжение генератора U с изменением тока возбуждения if при условии постоянства тока нагрузки I и cos . Рис 1.
Из числа разнообразных нагрузочных характеристик наибольший практический интерес представляет так называемая индукционная нагрузочная характеристика (рис. 1, кривая 2), которая соответствует чисто индуктивной нагрузке генератора, когда cos = 0 (инд.). Обычно она снимается для I=Iн. По схеме индукционную нагрузочную характеристику можно снимать так: с помощью РТ ступенями изменяют U на зажимах генератора и одновременно регулируют if так, что достигается I=const. Вместе с тем при необходимости несколько регулируют величину момента приводного двигателя так, чтобы cos = 0. Векторная диаграмма синхронного генератора при cos = О (инд.) изображена на рис,
Рис.
причем принято, что ra= 0. Из этой диаграммы видно, что в режиме индукционной характеристики существует чисто продольная размагничивающая реакция якоря Так как = 90°, то в режиме индукционной характеристики и. с. возбуждения и якоря складываются алгебраически, a Uн и — арифметически (рис.).
Способы гашения поля. При внутренних коротких замыканиях в обмотке якоря синхронного генератора или на его выводах, до выключателя (рис 1), автоматическая релейная защита с помощью выключателя отключает генератор от сети. Но короткое замыкание внутри генератора этим не устраняется, ток возбуждения if продолжает индуктировать э. д. с. в обмотке якоря, и в ней продолжают течь большие токи короткого замыкания, которые вызывают сначала расплавление меди обмотки якоря в месте короткого замыкания, а затем также расплавление стали сердечника якоря. Поэтому во избежание больших повреждений генератора необходимо быстро довести ток возбуждения и поток генератора до нуля. Такая операция называется гашением магнитного поля. Гашение поля возможно путем разрыва цепи возбуждения генератора с помощью, например, контактов 8 (рис. 1, а). Однако это недопустимо, так как при этом, во-первых, вследствие чрезвычайно быстрого уменьшения магнитного потока в обмотках генератора индуктируются весьма большие э. д. с., способные вызвать пробой изоляции. В особенности это относится к самой обмотке возбуждения и к ее контактным кольцам, так как номинальное напряжение цепи возбуждения относительно мало (50—1000 е). Во-вторых, магнитное Рис 1, а
поле генератора содержит значительную энергию, которая при разрыве цепи возбуждения гасится в дуге выключателя между контактами 8 Рис 1, а, в результате чего этот выключатель может быстро прийти в негодность. Разрыв цепи возбуждения возбудителя также недопустим в отношении возникающих при этом перенапряжений в обмотке возбуждения возбудителя. Кроме того, он не дает желательных результатов, так как обмотка возбуждения генератора 2 оказывается замкнутой через якорь возбудителя 6 и ввиду большой индуктивности и небольшого активного сопротивления этой цепи ток if будет затухать медленно, с постоянной времени 2—10 сек. При этих условиях размеры повреждения генератора при внутренних коротких замыканиях оказываются большими. В связи с изложенным проблему гашения поля приходится решать компромиссным образом — путем уменьшения тока if с такой скоростью, чтобы возникающие перенапряжения были в допустимых пределах, а внутренние повреждения генератора были минимальны. Для этой цели разработаны соответствующие схемы и аппараты гашения поля. Одна из широко применяемых схем гашения поля изображена на рис. 1, а. В этой схеме при нормальной работе контакты 8 замкнуты, а контакты 9 разомкнуты. При коротком замыкании внутри генератора релейная защита подает команду на замыкание контактов 9 и отключение контактов 8. Цепь обмотки 2 остается замкнутой через сопротивление 7 гашения поля rг, величина которого обычно в 3—5 раз больше сопротивления rf самой обмотки 2. При этом ток if затухает с определенной скоростью, которая тем больше, чем больше rг. Контакты 8 и в данном случае работают в довольно тяжелых условиях, так как на них возникает сильная дуга. Ввиду большой индуктивности цепи ток if в начальный момент гашения поля не изменяется, и поэтому напряжение на зажимах обмотки возбуждения в этот момент времени при схеме рис. 34-1, а больше его значения до гашения поля в раз. Отсюда следует, что большие значения kг недопустимы. Применяет также схему рис. 1, б, в которой сопротивление гашения поля отсутствует, а дуга в результате действия электродинамических сил выдувается с контактов 11 на решетку 12 и гасится в ней.
Рис 1, б Рассмотрим физические закономерности при гашении поля по схеме рис. 1, а, предполагая, что внутренних коротких замыканий в обмотке якоря нет. Это позволит установить также некоторые общие закономерности переходных процессов в синхронной машине. Разнообразные переходные процессы в синхронной машине обычно происходят в условиях, когда ее обмотка возбуждения замкнута через якорь возбудителя, сопротивление и индуктивность которого малы по сравнению с сопротивлением и индуктивностью обмотки возбуждения синхронной машины. Поэтому ниже будем предполагать, что обмотка возбуждения при гашении поля замкнута накоротко. Соотношения, получаемые при таком предположении, будут пригодны также при рассмотрении других переходных процессов синхронной машины. Если в действительности в цепи возбуждения имеются добавочные сопротивления, например сопротивление гашения поля, то это нетрудно учесть путем соответствующего увеличения сопротивления обмотки возбуждения. Будем также считать, что насыщение магнитной цепи и величины индуктивностей постоянны.
Машина без успокоительной обмотки при разомкнутой обмотке якоря.
В этом случае существует только один замкнутый контур тока (рис.1 а). Ток if при гашении поля является свободным током, существование которого не поддерживается внешними источниками э. д. с, и напряжения. Поэтому if затухает по закону, определяемому дифференциальным уравнением где полная индуктивность обмотки возбуждения Рис 1, а
величина Тdо представляет собой постоянную времени обмотки возбуждения при отсутствии в ее цепи дополнительных сопротивлений, при разомкнутой обмотке якоря и отсутствии успокоительной обмотки. Кривые изменения if изображены на рис. 2 а Рис 2 Уравнение мощностей: Первый член этого уравнения представляет собой мощность потерь в обмотке, а второй – равновеликую мощность, которая выделяется в этой обмотке за счет уменьшения энергии магнитного поля и покрывает мощность потерь.
Разомкнутой обмотке якоря
В этом случае по продольной оси имеются две индуктивно связанные цепи которым соответствует схема замещения При изменении тока if при гашении поля в успокоительной обмотке индуктируется ток iyd изменение которого в свою очередь влияет ток if Закономерности изменения токов определяется дифференциальными уравнениями:
где
Синхронных машин
Режим работы синхронной машины параллельно с сетью при синхронной скорости вращения называется синхронным. Рассмотрим особенности этого режима подробнее, причем предположим для простоты, что сеть, к которой приключена рассматриваемая машина, является бесконечно мощной, т. е. в ней U = const и f -= const. Практически это означает, что суммарная мощность всех приключенных к этой сети синхронных генераторов настолько велика по сравнению с мощностью приключаемой машины, что изменение режима работы машины не влияет на напряжение и частоту сети. Напряжение параллельно работающего генератора равно напряжению сети на зажимах генератора. Для простоты предположим также, что включаемая на параллельную работу машина является неявнополюсной и сопротивление якоря ra = 0. Тогда, согласно диаграмме, ток якоря машины определяется простой зависимостью
Рис.1 причем напряжения этих фаз U и jU сдвинуты по фазе на 90°. В подобной двухфазной системе взаимная индукция между фазами отсутствует и явления по осям d и q можно рассматривать независимо друг от друга. В результате вместо одной схемы замещения для симметричной асинхронной машины для синхронной машины получаем две схемы замещения - одну для продольной и другую для поперечной оси. При наличии успокоительной или пусковой обмотки (рис. 2, а и б) в схеме для продольной оси имеются две вторичные цепи, как и у двухклеточного асинхронного двигателя, а в схеме для поперечной оси – Рис 2, а Рис 2, б одна вторичная цепь. При отсутствии указанных обмоток (рис. 2, в и г) количество вторичных цепей уменьшается на единицу. На схемах рис. 2 принято rа = 0 и не учитываются потери в стали статора. При наличии в цепи возбуждения добавочного сопротивления (например, сопротивления гашения поля) его величина должна включаться в rf В основе рассмотрения явлений согласно рис. 1 и 2 лежит представление о двухфазной машине. Поэтому сопротивления схем рис. 2 также следовало бы считать эквивалентными сопротивлениями двухфазной машины. Однако, чтобы избежать введения в рассмотрение
Рис 2, в Рис 2, г новых параметров, будем предполагать, что сопротивления, фигурирующие в схемах рис. 2, представляют собой параметры m-фазной машины.
Асинхронные режимы различных видов синхронных машин.
При потере возбуждения синхронные генераторы переходят в асинхронный режим и их скорость вращения будет увеличиваться до тех пор, пока не наступит равенство между движущим моментом на валу и электромагнитным моментом машины. При этом машина будет потреблять из сети намагничивающий ток и отдавать в сеть активную мощность. При малых скольжениях поверхностный эффект в теле ротора турбогенератора проявляется слабо и поэтому глубина проникновения токов велика. В результате активное сопротивление тела ротора мало и момент достигает весьма большой величины уже при малых скольжениях. Поэтому турбогенераторы способны развивать в асинхронном режиме большую мощность, причем потери в роторе малы и не представляют опасности в отношении нагрева ротора. Допустимую мощность турбогенератора в асинхронном режиме ограничивает ток статора, величина которого из-за большого намагничивающего тока достигает номинального значения. В большинстве случаев при I = Iн в турбогенераторах Р = (0, 5 - 0, 7) Pн,. Ввиду относительно благоприятных характеристик Ma = f (s) на электростанциях разрешается кратковременная работа (до 30 мин) турбогенераторов в асинхронном режиме при условии, что потери в роторе и статоре не превышают потерь при номинальном режиме и потребление реактивной мощности с точки зрения режима работы энергосистемы допустимо. В течение указанного времени можно устранить неисправности в системе возбуждения, перевести турбогенератор на резервное возбуждение или перевести нагрузку на другие турбогенераторы или станции. Использование возможности работы турбогенераторов в асинхронном режиме позволяет увеличить надежность энергоснабжения потребителей. Асинхронные характеристики гидрогенераторов значительно менее благоприятны. Гидрогенераторы имеют шихтованные полюсы, и успокоительные обмотки во многих случаях у них отсутствуют. При отсутствии успокоительной обмотки мощность в асинхронном режиме развивается только за счет токов, индуктируемых в обмотке возбуждения. Активное сопротивление успокоительной обмотки велико, и в этом случае момент Ma при малых s также мал. Поэтому гидрогенераторы не могут развивать значительной мощности в асинхронном режиме, успокоительная обмотка быстро нагревается, и если восстановление возбуждения в течение 10—15 сек невозможно, то их нужно отключать от сети. Все синхронные двигатели имеют пусковые обмотки и обычно пускаются в ход как асинхронные двигатели, причем обмотка возбуждения замкнута через разрядное, или гасительное, сопротивление rг = (5 — 10) rf или замкнута накоротко. Пуск с разомкнутой обмоткой возбуждения недопустим, так как при этом может произойти повреждение ее изоляции. Скольжение невозбужденного двигателя изменяется при пуске от s = 1 до s = 0, 05, когда включается ток возбуждения и двигатель втягивается в синхронизм. Кривые М, = f (s) синхронных двигателей представлены на рис.. Момент, развиваемый обмоткой возбуждения, достигает максимального значения при малых скольжениях, в особенности, когда rг = 0, так как rf мало, а относительно велико. Наоборот, момент, развиваемый пусковой обмоткой, достигает максимума при s = 0, 3 - 0, 4, так как активное сопротивление этой обмотки значительно больше и рассеяние меньше. При расчете кривых было принято, что сопротивление обмотки якоря ra = 0. Поэтому на этих кривых не отражено возникновение провала момента при s = 0, 5 вследствие одноосного эффекта. Следует, однако, отметить, что при наличии пусковой обмотки на роторе этот эффект проявляется слабо. Начальный пусковой момент (s = 1) синхронных двигателей при U = Uн должен быть достаточно велик. С другой стороны, при малых s момент Ма также должен быть достаточно велик, так как в противном случае при пуске под нагрузкой двигатель в асинхронном режиме не сможет достичь скорости вращения, достаточно близкой к синхронной, и двигатель после включения тока возбуждения не втянется в синхронизм. Крутизну характеристики Ма = f (s) при малых s принято определять значением Ма при s = 0, 05, и эту величину момента условно называют входным моментом Мвх. Очевидно, что чем больше Мвх, тем лучше условия втягивания в синхронизм. Обычно требуется, чтобы Мвх = Мп Однако для увеличения Ма необходимо увеличить активное сопротивление пусковой обмотки, а для увеличения — уменьшить его. Поэтому вопрос о выборе величин Мвх и Мп надо решать компромиссным образом и использовать явление вытеснения тока в пусковой обмотке для увеличения Мп. Стержни пусковой обмотки с целью увеличения их сечения и теплоемкости изготовляются из латуни. Как видно из рис., при пуске без разрядного сопротивления Мвх получается меньше и, кроме того, при малых s может образоваться провал момента, так как максимум момента от действия обмотки возбуждения наступает при весьма малом s. Поэтому при rг = 0 втягивание в синхронизм происходит в менее благоприятных условиях. Если синхронная машина лишена успокоительной или пусковой обмотки и имеет немассивные полюсы или ротор, то в результате сильного проявления одноосного эффекта асинхронный пуск ее возможен только на холостом ходу или при малой нагрузке на валу, причем обмотка возбуждения должна быть замкнута через значительное активное сопротивление. Синхронные двигатели с массивными роторами или полюсами имеют благоприятную характеристику Ма = f (s), если отношение При малом большое влияние на величину тока в полюсных наконечниках начинает оказывать сопротивление торцевых зон полюсного наконечника, и асинхронный момент поэтому Мa уменьшается.
Синхронной машины
Асинхронный режим возбужденной синхронной машины, возникает в результате ее перегрузки или падения напряжения в сети, а также при подаче возбуждения генератору после потери возбуждения или при использовании метода самосинхронизации в двигателе при его асинхронном пуске При вращении синхронной машины со скольжением s постоянный ток возбуждения if индуктирует в обмотке якоря э. д. с. Ек и токи /к частоты (1 — s) f1. Токи Iк накладываются на ток частоты f1 протекающий в якоре под действием напряжения сети. Так как в самой сети э. д. с. и напряжений частоты (1 — s) f1 нет, то относительно э. д.с.. Поэтому ток Iк в сущности эквивалентен току установившегося короткого замыкания синхронного генератора. Момент Mk стремится уменьшить скорость вращения ротора и в режиме генератора облегчает, а в режиме двигателя затрудняет вхождение машины в синхронизм. Отметим, что на холостом ходу или при небольшой нагрузке на валу явнополюсная синхронная машина, вращающаяся с небольшим скольжением, способна втянуться в синхронизм и без возбуждения, в результате действия реактивного момента, который при s 0 также пульсирует с частотой sf1. В этом случае после включения тока возбуждения полярность полюсов может не соответствовать необходимой полярности, и тогда произойдет «проскальзывание» ротора относительно поля якоря на одно полюсное деление, причем одновременно возникнет также
кратковременный всплеск тока статора. Подобный переход не представляет для машины никакой опасности. Асинхронное самовозбуждение
Асинхронное возбуждение синхронной машины того же вида, как н в асинхронных машинах происходит н случае, когда емкость настолько велика, что хc < . Этот вид самовозбуждения возможен только при наличии на роторе замкнутых обмоток или контуров тока, в которых при асинхронном вращении ротора относительно поля якоря индуктируются токи. Если при этом ротор в электрическом отношении симметричен (рис. в), то амплитуда тока якоря в установившемся режиме будет постоянной, а при или (явнополюсная машина без успокоительной обмотки) ток якоря пульсирует (рис. г). В области самовозбуждение носит промежуточный характер, когда относительная скорость ротора и поля якоря резко неравномерна и ротор периодически «проскальзывает» относительно поля якоря на величину полюсного деления. В результате медленные изменения угла нагрузки чередуются с быстрыми (рис.1). Ток якоря при этом также пульсирует и самовозбуждение, происходит только при замкнутой обмотке возбуждения. Такой вид самовозбуждения называют также репульсионно-синхронным.
Рис в. Рис г. Рис 1.
Синхронные двигатели Синхронные компенсаторы
Как уже указывалось в синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения. Популярное:
|
Последнее изменение этой страницы: 2016-03-17; Просмотров: 1234; Нарушение авторского права страницы