Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Различие свойств нефти в пределах нефтеносной залежи
Физические свойства и состав нефти в пределах одного и того же продуктивного пласта не всегда остаются постоянными (Рис.2.8). Изменения свойств нефти в залежи зависят от многих факторов: генезиса пластовых флюидов, глубины залегания пласта, термобарического режима и других факторов. В сводовой части залежи всегда больше газа. Состав газа в куполе складки имеет больше азота, метана, этана, пропана приблизительно на 2 %, чем в крыльях. Распределение тяжёлых углеводородов газа увеличивается от свода к крыльям залежи. Бутановых углеводородов больше находится в крыльях. Давление насыщения нефти газом и количество растворенного газа в единице объёма нефти уменьшается по направлению к водонефтяному контакту, а, следовательно, и объёмный коэффициент нефти уменьшается к крыльям складки. В залежах, не имеющих выхода на поверхность и окруженных краевыми водами, плотность нефти и количество смол увеличиваются с глубиной залегания. Изменение этих величин в залежи происходит за счёт гравитационного распределения. Кроме того, в залежи величина плотности нефти возрастает от купола к крыльям и к подошве, что частично объясняется функцией распределения растворенного в ней газа. Ближе к зонам водонефтяного контакта происходят окислительные процессы, что сказывается на увеличении плотности нефти в приконтурных зонах. Рис.2.8 Вязкость нефти увеличивается от купола свода к крыльям и к зоне водонефтяного контакта. К зонам водонефтяного контакта вязкостные характеристики пластовой нефти возрастают за счёт гравитационного перераспределения высокомолекулярных компонентов нефти и диспергирования их в переходную зону на границе водонефтяного контакта. Каждая залежь имеет свой комплекс причин изменения свойств нефти по пласту (табл. 2.1) и на стадии исследования процессов разработки их необходимо изучать. Причины изменения свойств нефти по площади месторождения весьма разнообразны. Геологические и структурные особенности строения залежи, наличие выходов пласта на поверхность, химические, бактериологические, физико-химические и другие процессы, происходящие в пласте, прямо или косвенно влияют на состав и свойства нефтей. Таблица 2.1 Различие свойств нефти в пределах пласта Д1 Туймазы
Одним из методов исследования изменения свойств нефти по залежи является фотоколориметрия. В основе метода лежит способность раствора поглощать световой поток. Степень поглощения светового потока (Ксп) зависит от содержания и концентрации окрашенных веществ, представленных смолами и асфальтенами и другими полярными соединениями. Вместе с изменением содержания полярных компонентов в нефти изменяются её вязкость, плотность и другие свойства. Поэтому по изменению величины коэффициента светопоглощения (Ксп) можно судить и об изменении других показателей нефти. Зная начальное распределение свойств нефти по залежи и динамику изменения состава и свойств нефти, добываемых из скважин, можно, например, судить о направлениях движения нефти в пласте, устанавливать взаимосвязи нефтяных и нагнетательных скважин многопластовой залежи, оценивать продуктивность отдельных пропластков.
Лекция 6
СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПРИРОДНЫХ ГАЗОВ Природные газы – это вещества, которые при нормальных (н.у.) и стандартных (с.у.) условиях являются газообразными. В зависимости от условий газы могут находиться в свободном, адсорбированном или растворённом состояниях. В пластовых условиях газы в зависимости от их состава, давления и температуры (термобарического режима в пласте) могут находиться в различных агрегатных состояниях – газообразном, жидком, в виде газожидкостных смесей. Свободный газ обычно расположен в повышенной части пласта и находится в газовой шапке. Если газовая шапка в нефтяной залежи отсутствует, то весь газ залежи растворён в нефти. Давление, при котором имеющийся в залежи газ начинает выделяться из нефти, называется давлением насыщения. Давление насыщения нефти газом в пластовых условиях определяется составами, количеством нефти и газа, пластовой температурой. Растворённый газ, по мере снижения давления при добыче, выделяется из нефти. Он называться попутным газом. В пластовых условиях все нефти содержат растворённый газ. Чем выше давление в пласте, тем больше газа может быть растворено в нефти. В 1 м3 нефти содержание растворённого газа может достигать 1000 м3.
Состав природных газов Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородов (УВ) метанового ряда СН4–С4Н10: метана, этана, пропана, изобутана и н-бутана, а также неуглеводородных компонентов: H2S, N2, CO, CO2, H2, Ar, He, Kr, Xe и других. При нормальных и стандартных условиях термодинамически в газообразном состоянии существуют только УВ состава С1–С4. Углеводороды алканового ряда, начиная с пентана и выше, при этих условиях находятся в жидком состоянии, температуры кипения для изо-С5 равна 28оС, а для н-С5 → 36оС. Однако, в попутных газах иногда наблюдаются углеводороды С5 за счёт термобарических условий, фазовых переходов и других явлений. Качественный состав газов нефтяного происхождения всегда одинаков (что нельзя сказать о газах вулканических извержений). Количественное распределение компонентов практически всегда различно. Состав газовых смесей выражается в виде массовой или объемной концентрации компонентов в процентах и мольных доля х. , (2.15) где Wi - масса i-го компонента; Σ Wi - суммарная масса смеси. , (2.16) где Vi - объем i-го компонента в смеси; Σ Vi - суммарный объем газа. , (2.17) где ni - число молей i-го компонента в смеси; Σ пi - суммарное число молей газа в системе. Зависимость между объемной и мольной концентрациями компонентов вытекает из закона Авогадро. Так как равные объемы любых газов при одинаковых температуре и давлении содержат одинаковое число молекул, то объем i-го компонента смеси будет пропорционален числу молей i-го компонента: , (2.18) где К — коэффициент пропорциональности. Следовательно , (2.19) т. е. концентрация компонента в процентах по молям (% мол.) в смеси газов при атмосферном давлении практически совпадает с объемной концентрацией этого компонента в процентах (% об.). При высоких давлениях жидкие углеводороды растворяются в газовой фазе (газовые растворы, газоконденсаты). Поэтому при высоких давлениях плотность газа может приближаться к плотности легких углеводородных жидкостей. В зависимости от преобладания в нефтяных газах легких (метан, этан) или тяжелых (пропан и выше) углеводородов газы разделяются на сухие и жирные. Сухим газом называют природный газ, который не содержит тяжелых углеводородов или содержит их в незначительных количествах. Жирным газом называют газ, содержащий тяжелые углеводороды в таких количествах, когда из него целесообразно получать сжиженные газы или газовые бензины. На практике принято считать жирным газом такой, в 1 м3 которого содержится более 60г газового бензина. Газы, добываемые из чисто газовых месторождений, содержат более 95 % метана (табл. 2.2) и представляют собой, так называемые, сухие газы. Таблица 2.2
Тяжёлым нефтям свойственны сухие попутные газы с преобладанием метана в их составе. Например, содержание метана в составе попутного газа Русского месторождения Западной Сибири (плотность нефти более 920 кг/м3) аналогично содержанию метана в составе газа газового Уренгойского месторождения и составляет около 98, 8 об. %. Содержание метана в газах газоконденсатных месторождений колеблется в интервале 75–95 % (табл. 2.3). Попутный газ газоконденсатных месторождений и лёгких нефтей достаточно жирный. Таблица 2.3
Газы, добываемые вместе с нефтью из нефтяных месторождений (попутные газы) представляют собой смесь метана, этана, пропан-бутановой фракции, газового бензина. При повышенном давлении углеводороды состава С3, С4 легко сжижаются. В пластовых условиях в газообразном состоянии находится практически один метан. При нормальных условиях углеводороды от метана СН4 до бутана С4Н10 находятся в газообразном состоянии. Остальные углеводороды при этих условиях — жидкости. Пропан и бутан при повышении давления легко переходят в жидкое состояние. Упругость насыщенных паров углеводородов, т. е. то давление, при котором газ начинает конденсироваться и переходить в жидкое состояние, повышается с ростом температуры и она тем выше, чем ниже плотность углеводорода. Упругость пара — нелинейная функция температуры. Графики на рис. 2.9 построены так, чтобы получить линейную зависимость между упругостью паров углеводородов и температурой: шкала упругости пара принята логарифмической, а температурная шкала (в °С) принята произвольной. Рис.2.9 Удобство таких графиков заключается в том, что они позволяют легко и быстро определять по известной упругости пара при некоторой температуре упругость его паров при других температурах. Для этого проводят прямую линию через, известную точку и общую точку пересечения прямых упругостей паров (находящуюся вне графика на продолжении правой верхней части диаграммы). Из рис. 2.9 следует, что давление паров метана наибольшее; при нормальных условиях его нельзя превратить в жидкость (пунктирная линия 1 давления ненасыщенного пара метана), так как его критическая температура t = -82, 95° С. Давление насыщенных паров других углеводородов намного ниже. Например, бутан при t = - 20° С имеет упругость паров, равную 0, 22 Мн/м2 (2, 2 кГ/см2). К расчёту физико-химических свойств газа как многокомпонентной смеси можно применять принцип аддитивности. Аддитивный подход к расчёту физико-химических и технологических параметров означает, что каждый компонент газа в смеси ведёт себя так, как если бы он в данной смеси был один. Следовательно, для оценки макроскопических свойств нефтяного газа (при н.у. и с.у.) применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси): , (2.20) где где Ni – мольная доля; gi – весовая доля; Vi – объёмная доля; Пi – физико-химическое свойство i-го компонента. Для идеальных газов общее давление в системе (смеси газов) равно сумме парциальных давлений компонентов (закон Дальтона): , (2.21) где Р – общее давление смеси газов; рi – парциальное давление i-го компонента в смеси. Откуда , (2.22) . (2.23) То есть, парциальное давление компонента в газовой смеси равно произведению его молярной доли на общее давление смеси газов. Аддитивность парциальных объёмов (Vi) компонентов газовой смеси выражается законом Амага: , (2.24) где V – общий объём смеси газов; Vi – мольный объём i-го компонента газа в смеси. По аналогии с уравнениями (2.22–2.23) мольный объём компонента в газе можно оценить: . (2.25) Как аддитивные величины рассчитывают все физико-химические свойства газа, например, плотность смеси газов: , (2.26) где ρ i – плотность i–го компонента; Ni – мольная доля i–го компонента.
Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 1479; Нарушение авторского права страницы