Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Пороки поперечнополосатой мышцы
Еще одно обстоятельство подкрепляет наше заключение о том, что принцип поперечнополосатой мышцы был найден как‑ то разом и почти случайно, хотя биологическая потребность в нем уже давно назрела в высшей степени. Набредя на этот принцип, жизнь как будто ухватилась за него и сразу, без всяких переделок и вариантов, применила к оснащению подвижных скелетов. Дело в том, что при более внимательном рассмотрении физиологии поперечнополосатой мышцы она оказывается не таким‑ то удобным, а, главное, в целом ряде отношений просто мало подходящим к своему назначению органом. Очевидно, ее принцип обладал чем‑ то столь положительным, что жизнь на первых порах уверовала в него слепо, как будто не замечая его очень крупных недостатков; а позднее, когда они в полной мере обнаружились, точно спохватилась, что в свое время не озаботилась сформулировать как следует необходимые «технические условия» устройства и работы новой мышцы. (Мы и здесь выражаем надежду, что нам будут извинены наши образные олицетворения, которые мы снова отметим в ближайшем абзаце изложения, но которые помогут нам правильно подчеркнуть важнейшие факты и расставить, как говорится, точки над i). Поперечнополосатая мышца в том виде, как она вылилась из рук эволюции, оказалась кое в чем очень важном до такой степени мало отвечающей своему назначению, что пришлось поспешно и очень компромиссно искать способы для ее прилаживания. Другого двигателя все равно не находилось. Во‑ первых, оказалось, что манера сокращения поперечнопо лосатой мышцы, точнее сказать — ее микроскопически малой активной, составной частички, анизо‑ элемента (см. выше), совершенно не подходит к тому, что было бы биологически нужно. Эта манера, как показывают точнейшие записи на современных приборах, — грубый и резкий рывок, настолько внезапный и сходный со взрывом, что возникала прямая опасность искрошить скрепленные с такою мышцей кости. Компромисс, который выработался как мера борьбы с этой никуда не пригодной резкостью, состоял в том, что микроскопические анизо‑ элементы были переслоены такими же крохотными элементиками упругой сухожильной ткани (так называемыми изо‑ элементами). Мышечное волокно получило вид, похожий под микроскопом на столбик из чередующихся между собою двадцати‑ и трехкопеечных монет, соответствующих размещенным там по очереди анизо — и изо‑ элементам. Эти последние играют роль упругих буферов, или, как теперь говорят, амортизаторов, для яростных рывков анизодвигателей: они растягиваются во время рывков и затем уже более плавно и постепенно укорачиваются вновь, помогая мышце совершать ее работу. Чередование в каждом волокне анизо‑ и изо‑ элементов, обладающих разной окраской и качеством прозрачности, и придает волокну тот поперечноисчерченный вид, который обусловил название всей мышцы.
Во‑ вторых, анизо‑ элементы совершенно не способны к длительным сокращениям, более того — к какой бы то ни было регулировке их длительности. Все, что способен дать анизо‑ элемент, — это чрезвычайно короткую вспышку напряжения и сокращения: в мышцах человека она продолжается обычно не более одной тысячной доли секунды. Хуже всего то, что после каждой сократительной вспышки анизо‑ элемент как‑ то истощается, или устает, или еще что‑ то с ним происходит, пока еще совершенно не объясненное физиологией, но только вслед за каждой молниеносной вспышкой анизо элементу нужно двойное или тройное время сравнительно с продолжительностью самой вспышки, чтобы оправиться от нее и возвратить себе дееспособность. В ближайшие мгновения, следующие за вспышкой возбуждения, анизо‑ элемент абсолютно не возбудим ни для каких, хотя бы самых оглушительных, раздражений. Ничего подобного не наблюдалось с послушной и легко управляемой гладкой мышечной клеткой древнего образца. Для того, чтобы преодолеть это неудобное свойство анизо‑ элементов, потребовался новый компромисс. Нервная система приладилась посылать в поперечнополосатую мышцу целые серии импульсов возбуждения, пулеметно мчащихся друг за другом (50 — 200 раз в секунду). Каждая вспышка сокращения анизо‑ элемента протекает все еще гораздо быстрее промежутка между двумя последовательными импульсами, но тут помогают прежде всего упругие изопрокладки, замедляющие в несколько раз каждое сокращение, а затем и ряд других вспомогательных приспособлений. Слиянию пулеметной дроби сокращений анизо‑ элементов в плавные движения помогает и вязкость той студенистой полужидкости (так называемой саркоплазмы), которая наполняет «капоты» мышечных волоконец, и упругость сухожилий и связок, и, наконец, инерция самих органов движения, играющих здесь роль махового колеса. Описанные частые ряды возбуждений (так называемые те‑ танусы, — единственный способ длительно сокращать поперечнополосатое мышечное волокно или держать его сокращенным дольше пары сотых долей секунды. Можно было бы мысленно уподобить тетаническую серию возбуждений переменному электрическому току, вполне пригодному, несмотря на его прерывистость, и для приведения в действие электрических звонков, и для очень многих значительно более важных работ. То, что и в действительности напряженная скелетная мышца гудит, как «зуммер», применяемые в радиотелеграфии (это можно услышать, приложив ухо к напряженному бицепсу товарища или просто крепко сжав зубы, чтобы над самым ухом загудела собственная височная жевательная мышца), еще не могло бы являться серьезным недостатком в ее работе. Гораздо хуже то, что при каждой очередной вспышке сокращения поперечнополосатая мышца освобождает какую‑ то порцию своей химической энергии и эта энергия уже больше не может возвратиться обратно в мышцу, все равно, используется она для механической работы или нет. Если мышца должна не поднимать кверху груз, а только держать его на весу на определенной высоте, то это возможно не иначе как только посредством тетануса, т. е. ценою сотни сократительных вспышек каждую секунду. Каждая вспышка освобождает ровно столько же энергии, сколько было бы нужно, чтобы с большой быстротой поднимать поддерживаемый груз кверху, а так как при держании механическая работа вовсе не потребляется, то, значит, вся освобождаемая мышцей огромная мощность уходит ни на что — превращается целиком в бесполезный нагрев. Но и это еще не все. Анизо‑ элементы так же мало способны к регулировке силы своих сокращений, как и к регулировке их длительности. Если раздражать поперечнополосатое мышечное волокно электрическим током, то нужно довести этот ток до какой‑ то определенной силы для того, чтобы волокно вообще могло его почувствовать и отозваться на него. Но когда мы уже перешагнули этот порог, то дальше мы можем усиливать раздражающий ток до какой угодно величины, не выигрывая этим ни одного лишнего процента в силе ответного сокращения мышечного волокна: она все время будет оставаться той же самой. Этот закон действия поперечнополосатого волокна носит очень выразительное образное название: закон «все или ничего». Очень сходное с этим явление имеет место, например, при выстреле из винтовки. Для того, чтобы спусковой крючок соскочил, произведя выстрел, нужно потянуть его не меньше, чем с некоторой определенной силой; но дальше, если мы будем дергать его все сильнее и сильнее, мы все равно не добьемся этим никакого увеличения ни в силе, ни в дальности выстрела. Таким образом, сила того короткого рывка, которым исчерпываются все возможности анизо‑ элемента и поперечнополосатого волокна, тоже не поддается регулировке, и необходим новый приспособительный компромисс, чтобы добиться в этом отношении какой‑ то управляемости. Каждое волоконце двигательного нерва врощено своими разветвлениями в пачку из 10 — 100 мышечных волокон, которые, очевидно, под действием его импульсов могут двигаться не иначе, как все разом и все одинаково. Такая пачка мышечных волокон носит название миона [21]. Каждая мышца нашего тела состоит в зависимости от своей величины из нескольких десятков или сотен мионов. Способ регулировать силу ее сокращения заключается в том, что в работу включается в разных случаях разный процент составляющих ее мионов. Именно этим путем, включая и выключая мион за мионом, нервная система и умудряется достигать той замечательной плавности и тонкости в изменениях мышечных усилий, которою мы любуемся в нежной и ловкой работе сестры, бинтующей мучительную рану, или в точных, верных движениях резчика. Надо, впрочем, сказать, что центральная нервная система выработала и другой, более тонкий вспомогательный путь регулирования силы мышечных сокращений, о чем будет сказано ниже, в очерке V. Таковы были те немалочисленные вспомогательные и поправочные приспособления, которыми обросла со всех сторон поперечнополосатая мышца, чтобы стало возможным реально использовать ее преимущества. Если вдуматься, то весь случай в целом выглядит до чрезвычайности нетипичным. Как обычное правило, отбор и весь естественный ход эволюции мало‑ помалу шлифуют и шлифуют вновь вырабатывающийся орган, пока он не окажется на своем месте с абсолютной точностью, как влитой. Подумаем, например, об изумительном устройстве обширной системы пищеварительных желез, о замечательной (изученной до тонкости нашим великим соотечественником И. П. Павловым) приспособленности их к перевариванию самой разнообразной пищи. Вспомним о необычайно тонком и полном остроумия аппарате, с помощью которого регулируется давление крови в сосудах: о так называемых синусах недавно открытых чувствительных приборчиках, помещающихся в аорте, близ сердца, и в сонных артериях и чутко откликающихся приспособительными рефлексами на каждое колебание сосудистого «барометра». На этом фоне грубая и крайне мало подходящая к физиологическим потребностям мышечная ткань, не подвергшаяся сама никакой переделке или перешлифовке, а только обросшая целым комом всяческих ухищрений и компромиссов, выглядит странным исключением. При мысли о ней приходит в голову сельскохозяйственник, выписавший себе для полевых работ молотилку и получивший вместо нее, по отсутствию таковых на складе, легковой автомобиль. Именно таким автомобилем (тут — с веревочным приводом, там — с приколоченным гвоздями домодельным сооружением из неструганного теса) и выглядит монтаж в нашем скелетно‑ двигательном аппарате поперечнополосатой мышцы.
Членистоногие в тупике
Я уже упомянул, что первые впечатления от сравнения между собой двигательных аппаратов членистоногих и позвоночных говорят как будто в пользу простоты и четкости, свойственных первым. Единственный явный плюс, бросающийся в глаза у позвоночных животных, — это гибкая подвижность их туловища; второе же преимущество, гораздо менее очевидное, заслуживает краткой характеристики. Это преимущество на первый взгляд похоже скорее на недостаток. Речь идет об обязательном активном участии мускулатуры в поддержании равновесия тела, т. е. в том, что в научной терминологии носит название статики тела. Так, например, грудное звено тела насекомого, к которому прикреплены все его шесть ножек, имеет собственную панцирную прочность, для поддержания которой никакой мышечной работы не требуется. Туловище человека, тоже связанное со всеми его конечностями и поддерживаемое двумя из них, держится прямо только благодаря непрерывному напряжению всех мышц, «расчаливающих» позвоночный столб, подобно тому, как ванты расчаливают корабельную мачту. Зато такая, как будто более трудная для управления, система обеспечивает телу человека (или вообще позвоночного) исключительную приспособляемость и маневренность. Если какому‑ нибудь принципу вообще когда‑ либо удавалось решить задачу о сочетании всех преимуществ, свойственных мягкотелым, с жесткорычажным сооружением, пригодным для пере дачи больших усилий, то только принципу, положенному в основу строения позвоночных.
Нет спора, что управление такою «жестко‑ нежесткою» системой труднее, но мы уже видели по другому поводу в предыдущем очерке, как часто более трудный инструмент, но зато обладающий большим числом степеней свободы, менее ограничивающий и сковывающий своего обладателя, ценится мастером выше всего. Облегчающие же подпорки, лады и подставки он заодно с трехколесным велосипедом без сожаления уступает сынишке.
Результат этих неброских биологических преимуществ принципа позвоночных не замедлил сказаться в последующей истории животного мира. Оба гигантских по своему объему класса — членистоногие и позвоночные — по праву поделили между собой первые места на нашей планете, но затем позвоночные оставили своих соперников далеко позади. Суть, конечно, не в том, что членистоногим никогда в последующем не удавалось достигать размеров тела, хоть сколько‑ нибудь сравнимых с размерами позвоночных (эти последние, напротив, в следующем периоде развития побили все рекорды величины тварей, когда‑ либо населявших Землю). Гораздо важнее то, что в отношении умственных способностей и теснейшим образом связанной с ними области движений членистоногие далеко и безнадежно отстали от позвоночных. Все рассказы о замечательном якобы уме насекомых, опирающиеся на захватанную (и почти единственную на все сотни тысяч видов насекомых) пару примеров об общественной жизни пчел и муравьев, при более тщательной проверке их оказываются чистым недоразумением[22].
Своеобразный и сложный инстинкт, управляющий действиями этих насекомых и в своей природе еще совершенно не разгаданный, стоит вне сомнений, но между инстинктом и живою сообразительностью пропасть того же порядка, как и пропасть между жесткой головогрудью рака и шеей лебедя или телом кошки.
Те же насекомые, с геометрической точностью строящие стенки сотов под вечно равными друг другу углами или устраивающие коллективные «коровники» из травяных тлей при своих муравейниках, будучи поставлены в чуть‑ чуть непредвиденные условия, мгновенно теряются до полного расстройства координации. Если десяток муравьев как будто бы дружно волокут к муравейнику соломинку, то это изумляет и поражает, однако более тщательная проверка показывает, что при этом шестеро муравьев тянут в сторону гнезда, а остальные четыре — прочь от него, и соломинка влечется только по равнодействующей. Переверните жесткокрылое насекомое на спинку, посадите муху без крыльев на конец травинки, преградите муравьям вершковою полоской воды их главную магистраль, ведущую к муравейнику, и т. п. Первою реакцией всех их будет величайшая, суетливая растерянность; второю — действия, в которых не знаешь, чего больше: смысловой ли бестолковости или двигательной неуклюжести. Мы уже говорили во вступительном очерке, что самый существенный признак для ловкости — находчивость, способность быстро и с честью выйти из любого непредвиденного положения. Но этого как раз и нет в поведении членистоногих. Они могут обладать исключительным проворством (муха, блоха, краб в воде, паучок‑ охотник и т. п.), недаром все‑ таки их тела оснащены поперечнополосатой мускулатурой, в придачу почти свободной от вязкой студени — саркоплазмы, но от проворства до ловкости еще очень далеко.
Так, по крайней мере, скажет всякий, кому несущийся опрометью в пылу игры мальчишка угодит головой в живот. Предпочтя панцирный принцип принципу настроечной гибкости, природа членистоногих с абсолютной последовательностью пошла дальше по раз избранному пути. Эволюция выработала для насекомых сложные и точные инстинкты, такие же неизменяемые, как и их панцири; создала для их несложного обихода такие же формы поведения, однообразные, хорошо подогнанные и уже раз навсегда неизменяемые, точно рельсы, но зато и навсегда закрыла для них пути к личной индивидуальной приспособительности и к накоплению личного жизненного опыта. А этим шагом навсегда убила для них какие‑ либо перспективы умственного прогресса.
Эволюция позвоночных
Чтобы закончить этот очерк, нам остается сделать еще краткий обзор «новой» истории движений, истории, начавшейся после великого «поперечнополосатого переворота», который был обрисован на предыдущих страницах. Оставим членистоногих в том тупике, в который в конце концов завели их отрицательные черты строения двигательного аппарата, и сосредоточим теперь все внимание на позвоночных. Важнейшая определяющая черта неокинетических животных [23](как мы теперь будем называть обладателей поперечнополосатой мускулатуры) — центральная нервная система и головной мозг начали впервые с известной четкостью определяться уже у высших моллюсков (например, у головоногих — осьминога, каракатицы.) Однако только у позвоночных они нашли условия для бурного и безостановочного развития, продолжающегося и поныне. Это развитие, некоторые подробности которого будут освещены дальше, повело в конце концов к тому, что головной мозг, и в частности самая новая его часть, так называемая кора больших полушарий, завладел у высших позвоночных верховной диктатурой по всем решительно физиологическим отправлениям. Это — новая, только в последние годы приоткрываемая страница науки о мозге; высокие заслуги в ее открытии принадлежат крупнейшему русскому физиологу К. М. Быкову. Год от года выявляется все больше и больше сторон жизнедеятельности, на которые головной мозг простирает свое верховное влияние: обмен веществ, управление физико‑ химическими процессами в крови, кроветворение, борьба с заразными началами и т. д., и т. д. Как бесконечно далеко это от тех невзрачных волоконец, едва начавших обособляться от окружающей ткани, по которым пробивал себе дорогу первобытный электрохимический возбудительный импульс!
Мы начнем и эту часть обзора таблицей — сводкой, указывающей последовательный порядок развития классов позвоночных. Для примерной оценки давности их возникновения на Земле снова воспользуемся примененным уже однажды уменьшительным масштабом времени I: 50 000 000, полезным для лучшей наглядности.
Таблица‑ классификация позвоночных животных I. Рыбы: а) древние, докостистые (например, минога, акула, скат, осетр); б) более новые, с костными скелетами (окунь, ерш, щука, летучая рыба и др.). Древнейшие рыбы, несомненно, появились еще где‑ то в третьем «десятилетии» нашего масштаба (стр. 62). II. Амфибии или земноводные (например, лягушки, тритон, аксолотль).
III. Рептилии, или пресмыкающиеся. От этого когда‑ то чрезвычайно обширного класса до нашего времени уцелели только немногие отряды: змеи, черепахи, ящерицы и крокодилы. Рептилиями заканчивается раздел так называемых холоднокровных позвоночных; точнее было бы определять все три перечисленных класса (I — III) как животных, обладающих переменной температурой окружающей их среды. Первые земноводные появились на Земле около 15 «лет» назад; первые рептилии — 6 — 8 «лет» назад.
IV. Птицы: а) нижестоящие, выводковые (киви, пингвин, страус, курица, куропатка и др.); б) вышестоящие, птенцовые (ласточка, сова, орел и др.). Птицы очень постепенным, хорошо прослеженным порядком выработались из летучих пресмыкающихся; этот процесс их формирования начался около 5 «лет» назад и продолжался 3 — 4 «года». V. Млекопитающие: 1) древнейшие — однопроходные и сумчатые (утконос, кенгуру, многочисленные австралийские виды сумчатых); 2) низшие млекопитающие (насекомоядные, грызуны и др.); 3) высшие млекопитающие (копытные, хищные, полуобезьяны и др.); 4) наивысшие млекопитающие — обезьяны: а) нижестоящие (павиан, мартышка) и б) вышестоящие, человекообразные (в порядке возрастающей близости к человеку: шимпанзе, орангутанг, горилла). 5) прямые предки человека и современный человек. Древнейшие млекопитающие относятся ко времени заката царства пресмыкающихся — около 3 «лет» назад. «Год» назад млекопитающие уже господствуют на Земле, и их имеется большое количество видов. Высшие млекопитающие: хищники, слоны, ранние обезьяны — насчитывают от 3 до 6 «месяцев» со времени своего возникновения. Человекообразным обезьянам и древнейшему ископаемому предку человека, так называемому питекантропу, — около 2 «недель» от роду. Человеку древнекаменного века, жившему в ледниковые периоды и сражавшемуся с мамонтами, — меньше «недели». Для сравнения этих действительных промежутков времени из истории Земли с наивными представлениями мифов и религий небезынтересно будет упомянуть мимоходом, что в принятом нами уменьшительном масштабе времени «сотворение мира богом», как о нем повествует Библия, должно было иметь место 11 /2 «часа» назад.
Птицы и млекопитающие составляют вместе раздел теплокровных позвоночных, точнее говоря — животных с постоянной температурой тела, не зависящей от температуры внешней среды. Так как скорость всякого химического процесса очень резко возрастает с повышением температуры, то все процессы в организмах «теплокровных» животных, в частности наиболее интересные для нас процессы в их нервах и мышцах, протекают во много раз живее и энергичнее, чем у «холоднокровных» животных. (Это примечание вскоре очень пригодится нам).
Сенсорные коррекции
Очерк истории позвоночных, из всего животного мира, как оказалось, наилучшим образом решивших задачу приспособления и развития, мы начнем с упоминания еще о двух новшествах, возникших и развившихся как прямое следствие появления поперечнополосатой мышцы и всего того нового двигательного принципа, который мы только что назвали неокинетикой. Первым новшеством были сенсорные коррекции, подробно описанные нами в предыдущем очерке. У древнейших бесскелетных животных с медлительной гладкой мускулатурой и с большим преобладанием в их обиходе местных члениковых телодвижений еще не было потребности в том тонком управлении движениями, для которого нужен непрерывный контроль со стороны органов чувств. К тому же для сверки текущего движения с тем, как оно было запланировано, — а в этом ведь и состоит работа сенсорных коррекций, — нужно уже, чтобы имелась такая предварительная планировка предпринятого движения, нужно, чтобы были и органы, способные его планировать. Когда еще не существует головного мозга, когда нет памяти в каком угодно виде, способной выдерживать и выполнять в правильном порядке части сложного цепного движения или действия, тогда с чем же и посредством чего сверять совершаемое движение? По какому признаку решать, течет ли оно точно так, как было намечено, или нет?
Наконец, надо добавить и то, что сам двигательный аппарат у новых, неокинетических животных быстро становился все более трудным для управления, несравнимо с теми немудреными устройствами, какие имелись к услугам червя или устрицы. Дальнодействующие органы чувств — телерецепторы — вызывали к жизни переместительные движения всего тела, локомоции, как об этом уже говорилось. Для локомоции потребовалась дружная, согласованная работа мышц всего тела — синергии — оркестр, которому нужен был и дирижер в лице центрального мозга. При всем том каждый музыкант этого большого оркестра, каждая поперечнополосатая мышца представляла собой гораздо менее послушный и удобный для управления орган, нежели древние гладкие мышечные клетки. Мы уже говорили о тех сложных ухищрениях, на которые вынуждена пускаться центральная нервная система для того, чтобы получать от этой мышцы длительные сокращения, тетанусы, или плавные изменения силы. Здесь столкнулись между собой: и возросшая быстрота и сила движений, и их обширность и сложность, и капризность их главного исполнителя — мышцы, и все растущая требовательность животных к точности и меткости своих движений. Сведите все это воедино с теми фактами, которые были разобраны в предшествующем очерке: с крайней непослушностью всяких вообще подвижных систем о многих степенях свободы, с добавочными трудностями, проистекающими из упругих свойств мышцы, и вам не нужно будет больше доводов в пользу того, зачем именно на этом этапе развития обязательно потребовались сенсорные коррекции. Интересно отметить, что у древних бесскелетных животных все «рефлекторное кольцо», о котором также говорилось в предыдущем очерке, работает как раз в обратную сторону, чем у нас. Пронаблюдайте червя, наползшего на какое‑ нибудь препятствие, или улитку, добравшуюся до конца травинки. Как только дело доходит до какого‑ либо из затруднений в этом роде, начинаются беспорядочные и (сравнительно) оживленные ощупывания, «снующие» движения во все стороны. У высших, неокинетических животных, в том числе и у нас, движения идут на поводу у ощущений, управляются и направляются ими. У низших, наоборот, ощущения обслуживаются и обеспечиваются с помощью движений. Движения, с виду бессистемно и бестолково, идут впереди ощущений, хватают и ловят их, где попало. Этот механизм активного, деятельного «ощущения» сохранился и у нас, за исключением бессистемности, в работе наших наивысших органов чувств, зрения и осязания, где круговорот «рефлекторного кольца» сплетается в совершенно неразрывное и очень сложное по строению целое. В последующих очерках мы будем иметь еще несколько случаев увидеть, с какою бережностью наша центральная нервная система вообще сохраняет самые древнейшие механизмы, казалось бы давно устаревшие и подлежащие сдаче в архив. Этот грубый древний механизм ощущения, действовавший в отдаленнейшие времена, еще задолго до сенсорных коррекций, вновь возродился в усовершенствованном и утонченном виде и, слившись в своей работе с этими коррекциями, обеспечил работу наших наиболее высокоразвитых органов чувств. О сенсорных коррекциях следует добавить еще, что необходимая потребность в них, выявившаяся у высших животных, послужила новым и очень могучим побудителем к дальнейшему развитию головного мозга. Как мы покажем дальше, главным образом эта потребность способствовала развитию так называемых сенсорных полей, т. е. целых сложных слепков из ощущений самых разнообразных органов чувств, слепков, направляющих движения животного или человека и помогающих упорядочению этих движений в пространстве.
Развитие конечностей
Вторым — новшеством, естественно последовавшим за упрочением неокинетической системы с ее суставчатыми рычагами и поперечнополосатыми мышцами, было развитие у животных конечностей. У низших, бесскелетных организмов не было конечностей, в лучшем случае вместо них иногда возникали «ложные конечности» (псевдоподии) вроде лучей морской звезды или «ноги» улитки, которая, по сути дела, есть низ ее туловища. И у позвоночных настоящие конечности выработались далеко не сразу.
Зачатки конечностей у рыб — боковые плавники — не служат им для передвижения. Чтобы плыть, рыба работает: 1) хвостом, как пропеллером и 2) непарными спинными и брюшными плавниками, которые своими змеистыми колебаниями как бы ввинчиваются в воду. Боковые плавники используются главным образом как рули глубины и отчасти направления. Они начинают превращаться в настоящие конечности только после выхода из воды. В каком‑ то из периодов эволюции рыбам начало делаться тесно в реках, озерах и океанах. Позвоночные предпринимают попытки к завоеванию других стихий земли: то к выходу в воздух (летучие рыбы, рыбы‑ ласточки), то к освоению суши (рыба‑ ползун, двоякодышащие рыбы и т. п.). Следующий за рыбами по порядку развития класс позвоночных — амфибии (с греческого — «двужизненные») имеют уже настоящие конечности‑ лапки, сохраняющие в своих скелетах туже лучистую или кистеобразную форму строения, какою они обладали в плавниках рыбы.
Эволюция и здесь оказалась верной своим обычаям и, избегая крутых новшеств, перекроила понадобившиеся органы из нашедшегося под руками старого материала: лапки — из боковых плавников, легкие для дыхания в воздухе — из плавательного пузыря рыб и т. д. Самое знакомое нам создание из амфибий — лягушка очень показательно повторяет в жизни каждой отдельной особи всю историю выхода водных позвоночных на сушу, навеки отпечатлевшуюся на ней. Она начинает свое существование рыбкой, даже без плавников, дышащей жабрами (головастик), и лишь позднее у нее одновременно рассасываются жабры и хвост и отрастают лапки. Конечности явились очень глубоким, принципиальным новшеством. Они появились в ту пору, когда древние побудительные причины к члениковому (сегментному) строению тела в большей степени выдохлись и развитие конечностей пошло как бы перешагивая через развалины этого старинного принципа строения, еще сохранявшегося на древнейшей части тела — туловище.
Поэтому, во‑ первых, сами конечности уже не обнаруживают никаких следов сегментности — это видно хотя бы на способах снабжения их мышц двигательными нервами. Во‑ вторых, нужно указать здесь на одно обстоятельство, гораздо более важное для нашего изложения. Последовательное развитие у позвоночных неокинетики, за нею — больших двигательных синергии для передвижения по пространству (локомоций) наконец, конечностей как усовершенствованных орудий для такого передвижения, повело к соответствующему обогащению центральной нервной системы приспособлениями, нужными для обслуживания всех этих эволюционных нововведений. Сравнительная анатомия мозга животных показывает, что вся эта серия новшеств более чем какие‑ либо из предшествующих шагов развития содействовала настоящей централизации в мозгу, появлению в нем первых образований, без оговорок заслуживающих названия головного мозга. Древнейшая часть центральной нервной системы позвоночных — спинной мозг [24] еще полностью выдержан на члениковом (сегментном) типе строения. Новые ядра головного мозга, вырабатывавшиеся в «рыбьем» периоде эволюции позвоночных и окончательно оформившиеся у первого животного с ногами — лягушки, уже полностью надсегментны. Их нервные проводники управляют уже всем спинным мозгом в целом, и в частности всеми конечностями. Еще важнее отметить тот факт, что деятельность этого верховного головного мозга, управляющего движениями конечностей и локомоциями (мы будем в последующих очерках обозначать его как уровень В), протекает у земноводных полностью по законам неокинетической системы: с относительно высоковольтными и быстро несущимися электрическими сигналами, с повиновением закону «все или ничего» и т. д. Более же древние центры мозга, за которыми у земноводных сохранилось управление туловищем (уровень А по нашим обозначениям), работают в большой мере еще по древнедвигательным законам: с низковольтными, медленными импульсами, с большой степенью участия в них старинной, химической передачи сигналов и т. д. Замечательно здесь то, что даже у нас, людей, обладателей мозга, который сильнее отличается от мозга лягушки, чем многоэтажный дворец от лачуги дикаря, — даже у нас в головном мозгу имеются в раздельном виде уровень В и уровень А, с порядочной четкостью делящие между собой управление конечностями и шейно‑ туловищной мускулатурой, и даже у нас все еще древний, сегментный, туловищный уровень А в большой степени продолжает работать по тем же древнедвигательным законам. Вопрос об уровнях мы полнее осветим в следующих двух очерках.
Обогащение движений
Все последующее развитие движений у позвоночных — это непрерывное обогащение двигательных средств и возможностей животных от класса к классу и от «года» к «году» нашей хронологической таблицы их эволюции. Это обогащение происходит отнюдь не без причины и не вследствие какой‑ либо таинственной, заложенной в животных внутренней «пружины», которая побуждает их к непрерывному совершенствованию. Нет, к обогащению двигательных ресурсов ведет все время одна и та же жесткая и безжалостная, чисто внешняя причина: конкуренция и борьба за жизнь. Животным становится тесно от непрерывно идущего размножения. Им не хватает средств питания. Вырабатываются хищные породы, которые предпочитают предоставлять другим животным изыскивание себе пригодного питательного материала и захватывать его уже в готовом, «полуфабрикатном» виде, пожирая этих более слабых животных. У этих последних вырабатываются средства самозащиты: резвые ноги, защитная окраска, броневые покровы, рога и копыта и т. п. Не имеющие таких средств защиты в первую очередь пожираются хищниками, которые, сами того не подозревая, способствуют этим усовершенствованию преследуемых ими пород. В самом деле, наибольшие шансы уцелеть от истребления и еще долго производить похожее на себя потомство имеют те особи, которые, может быть даже случайно, лучше защищены. А самой надежной самозащитой являются все‑ таки богатые и совершенные двигательные возможности. Тот же закон конкуренции бьет другим концом палки и по хищникам: недостаточно проворные, хитрые и зубастые среди них рискуют умереть с голоду, не будучи в состоянии захватить изловчившуюся в самозащите съедобную живность. Движения обогащаются этим путем прежде всего по их силе, быстроте, точности и выносливости. Но это обогащение почти только количественное. Важнее другие две стороны движений, все более совершенствующиеся. Во‑ первых, те двигательные задачи, которые приходится решать животному, становятся все сложнее и при этом все разнообразнее. Весь перечень движений рыбы состоит почти целиком из ее основной локомоции — плавания да какой‑ нибудь пары простейших охотничьих движений в придачу. У одной из наиболее низко развитых рыб — акулы вся ее охота состоит в том, что она подплывает под свою жертву, поворачивается брюхом кверху (так ей способнее) и раскрывает пасть. Земноводное животное кроме плавания может еще ползать, прыгать, издавать звуки. Змея умеет уже затаиться в засаде. А как сложны и полны разнообразия, по сравнению со всем этим, хотя бы цепные охотничьи действия хищника‑ млекопитающего! Тут и хитрости лисицы, и чуткий поиск охотничьей собаки, и коварная засада тигра, нацеливающегося на нелегкую и для него добычу. В ближайших строках мы более обстоятельно проследим эту сторону движений, усложнение решаемых ими задач. Во‑ вторых, все больше возрастает число непредвиденных, не шаблонных задач, которые животному приходится решать тут же, «на ходу». Как мы уже видели во вступительном очерке, здесь‑ то как раз имеет место наибольший спрос на ловк Популярное:
|
Последнее изменение этой страницы: 2016-04-09; Просмотров: 824; Нарушение авторского права страницы