Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Многокаскадные усилители напряжения.



При разработке многокаскадных усилителей очень важен выбор типа связи между отдельными усилительными каскадами. Обычно используется гальваническая (непосредственная), емкостная, трансформаторная и оптронная связь. Для низкочастотных усилителей чаще всего используют два первых типа связи. Третий тип применяют значительно реже из-за больших габаритов трансформаторов и их высокой стоимости (трансформаторная связь может быть успешно использована для получения максимального усиления мощности при достаточно высоком КПД). Оптронная связь между каскадами применяется сравнительно редко, только в специальных случаях, когда при низкой рабочей частоте требуется хорошая гальваническая развязка между каскадами.

При проектировании многокаскадных усилителей, к которым не предъявляются специальные требования, обычно задают выходную мощность и напряжение, сопротивление нагрузки, допустимый коэффициент гармоник, рабочий диапазон частот, входное напряжение, внутреннее сопротивление источника питания и другие параметры.

При разработке усилительных устройств предусматриваются средства, обеспечивающие защиту его входных цепей от возможных перегрузок при случайном воздействии помех большого уровня, приводящих в лучшем случае к перегрузке усилителя и кратковременной потере его работоспособности. Чаще всего для этого на входе усилителя используется диодный ограничитель (см. гл. 8).

Наиболее ярким примером многокаскадных усилителей являются операционные усилители (ОУ). Их отличие от усилителей, выполненных на дискретных элементах, заключается в основном только в методах изготовления отдельных компонентов схем и технологии изготовления законченных функциональных узлов. Однако в большинстве случаев принципиальные схемы интегральных усилителей выглядят значительно сложнее своих дискретных аналогов. Это объясняется тем, что введение нескольких транзисторов в схему усилителя для незначительного улучшения каких-либо его параметров при интегральной технологии не вызывает затруднений и не оказывает существенного влияния на его стоимость.

Благодаря использованию двухполярного питания ОУ обладает замечательной особенностью, которая позволяет получить близкое к нулю выходное напряжение при отсутствии входного сигнала. Это свойство позволяют подключать к ОУ нагрузку и источники входных напряжений, не заботясь о разделении переменной и постоянной составляющей сигнала.

В составе ОУ как многокаскадного усилителя условно можно выделить входную, выходную части и каскады связи между ними.

Входная часть ОУ содержит дифференциальные усилители. Выходная часть включает каскады усиления мощности и обеспечивает работу ОУ на заданную нагрузку. Каскады связи служат для усиления по напряжению и позволяют осуществить согласование уровней сигнала.

В зависимости от количества каскадов, вносящих основной вклад в получение требуемого коэффициента усиления напряжения, ОУ условно делят на двух- и трехкаскадные. Как правило, предпочтение отдается двухкаскадным ОУ. Они имеют лучшую стабильность параметров, могут работать при значительных изменениях напряжения питания, более экономичны. Для коррекции частотной характеристики в двухкаскадных ОУ используется минимальное количество внешних элементов (необходим лишь один конденсатор малой емкости). Кроме того, в них легко осуществляется регулировка уровня выходного напряжения (установка нуля) с помощью одного потенциометра балансировки.

В многокаскадных усилителях на базу каждого следующего каскада поступает не только полезный сигнал, но и постоянная составляющая напряжения с коллектора предыдущего каскада. Для согласования по постоянной составляющей на входе каждого каскада используются так называемые схемы сдвига уровня.

Простейшей схемой сдвига уровня является эмиттерный повторитель, у которого уровень выходного потенциала (потенциала эмиттера) ниже уровня потенциала базы на величину Е (напряжение эмиттер—база в статическом режиме), а сигнал передается с коэффициентом передачи К=1.

Одна из возможных схем, иллюстрирующая принцип сдвиг уровня с использованием эмиттерного повторителя, показана на рис. 7.17, а. Транзистор VT1, на базу которого подается входной сигнал Ui, выполняет роль эмиттерного повторителя. Транзистор VT2 включен генератором тока, на его базу подается напряжение Us от специальной цепи смещения. Уровень выходного напряжения определяется напряжением Е и падением напряжения на резисторе R1

(7.16)

где ток I, — ток, задаваемый стабилизатором на транзисторе VT2; умножение Е на 2 связано с тем, что в процессе формирования уровня сдвига участвуют двар—п- перехода — транзисторов VT1 и VT3.

Коэффициент передачи по переменной составляющей определяется внутренним сопротивлением стабилизатора тока, которое значительно больше сопротивления резистора R2.

На рис. 7.17, 6 показана еще одна схема сдвига уровня, которая отличается наличием дополнительного диода VD, обеспечивающего дополнительный сдвиг напряжения на величину Е. Резистор R1 служит для точной подгонки необходимого уровня сдвига. Достоинством этой схемы является возможность получения любого уровня сдвига за счет использования N включенных последовательно диодов, при этом выражение (7.16) может быть записано в следующем виде: Uo=Ui-(N+2)E-I, Rl.

Усилители мощности.

Для борьбы с искажениями типа " ступенька" на базы транзисторов выходного каскада УМЗЧ подают небольшое начальное напряжение смещения, устанавливая режим класса В. или. чтобы гарантировать отсутствие искажений, класса АВ, пропуская небольшой начальный ток через транзисторы - ток покоя.

Другой способ - введение отрицательной обратной связи (ООС). снижающей искажения. Часто оба варианта используют совместно.

Поскольку делитель напряжения, предназначенный для создания начального смещения, потребляет некоторый ток. удобно использовать ток предоконечного каскада, усиливающего напряжение и работающего в режиме класса А.

Схема УМЗЧ с предоконечным усилительным каскадом и однополярным питанием приведена на рис. 38.

Рассмотрим его работу подробнее.

Входной сигнал через разделительный конденсатор С1 подается на базу транзистора VT1 предоконечного каскада. Смещение же поступает через резистор R1. Вообще-то, как мы видели ранее, этот резистор должен бы подключаться между базой и коллектором транзистора VT1. Однако, учитывая, что выходной каскад является эмиттерным повторителем, лучше все-таки подключить его к выходу, где напряжение по постоянному току такое же, но ООС будет охватывать и выходной каскад, снижая искажения сигнала.

В коллекторную цепь транзистора предусилительного каскада включен в прямом направлении диод VD1, падение напряжения на котором и создает начальное смещение на базах транзисторов выходного каскада. Можно было бы включить вместо диода резистор с небольшим сопротивлением, но диод обеспечивает лучшую температурную стабильность всего усилителя.

Дело в том, что с ростом температуры уменьшается напряжение база-эмиттер выходных транзисторов, необходимое для обеспечения выбранного тока покоя. Прямое напряжение на диоде также уменьшается с ростом температуры, что не дает току покоя возрастать. У мощных усилителей этот диод размещают на радиаторе выходных транзисторов. Для регулировки тока покоя подбирают число диодов, включенных вместо VD1 последовательно или параллельно. Можно добавить к диодам и подстроечный резистор.

Усиленный выходным каскадом по току сигнал поступает через разделительный конденсатор большой емкости С2 на динамическую головку ВА1. Конденсатор C3, также большой емкости, шунтирует источник питания. Он нужен, когда батарея питания частично разряжена и ее внутреннее сопротивление возросло. Тогда конденсатор, накапливая энергию батареи, обеспечивает отдачу больших импульсов тока в нагрузку на пиках громкости. При сетевом питании им может служить сглаживающий конденсатор выпрямителя.

Обратите внимание на подсоединение резистора нагрузки предоконечного каскада - не к плюсу источника питания, а к выводу динамической головки ВА1. На режиме усилителя по постоянному току это не сказывается, так как сопротивление головки мало, но работа усилителя на звуковых частотах заметно улучшается в результате возникающей " вольтодобавки". Когда на входе усилителя действует положительная полуволна сигнала, ток транзистора VT1 увеличивается, а напряжение на его коллекторе падает, формируя отрицательную полуволну выходного сигнала. При этом часть коллекторного тока ответвляется в переход база-эмиттер транзистора VT3, открывая его.

Когда же на входе усилителя действует отрицательная полуволна входного сигнала, транзисторы VT1 и VT3 закрываются, a VT2 открывается током, текущим через резистор нагрузки R2. Если его сопротивление значительно, транзистор VT2 открывается хуже, чем VT3. что приводит к ограничению положительных полуволн выходного сигнала, т.е. к искажениям. Подсоединив резистор R2 к нижнему по схеме выводу динамической головки, мы в значительной мере устраняем эти искажения, поскольку мгновенное напряжение на этом выводе при положительной полуволне выходного сигнала становится больше напряжения питания. Это и обеспечивает лучшую " раскачку" транзистора VT2.

В заключение приведем ориентировочный расчет данного усилителя. Допустим, что напряжение питания составляет 6 В и сопротивление динамической головки 6 Ом (вы можете использовать и другие данные). Из осциллограмм видно, что амплитуда выходного сигнала не может превысить половину напряжения питания, т.е. 3 В. Максимальная амплитуда тока в головке составит, следовательно, 3 В/6 Ом = 0.5 А. Максимальная выходная мощность усилителя равна половине произведения амплитудных значений тока и напряжения и составит 0.75 Вт. Средний ток, потребляемый от источника питания в случае установки режима класса В. составляет 0, 32 пикового значения, т.е. 175 мА, а потребляемая мощность - 1.05 Вт. В режиме класса АВ и ток. и потребляемая мощность несколько больше. Отсюда ясно, что в выходном каскаде надо использовать транзисторы средней мощности.

Расчет предоконечного каскада еще проще. Если мы зададимся статическим коэффициентом передачи тока выходных транзисторов (скажем, 50). то можем определить амлитуду переменного тока в их базах. Она составит 0.5 А / 50 = 10 мА. Таким же должен быть и ток коллектора предоконечного каскада. Поскольку на резисторе нагрузки R2 падает половина напряжения питания, определяем его сопротивление: 3 В / 0, 01 А = 300 Ом.

Сопротивление резистора R1 находим, умножив сопротивление нагрузки на статический коэффициент передачи тока транзистора VT1. Если он равен, например, 100, то сопротивление составит 30 кОм. Этот резистор проще подобрать экспериментально, измеряя напряжение на эмиттерах выходных транзисторов - оно должно составлять половину напряжения источника питания.

Из такого приближенного расчета ясно, что для повышения экономичности и эффективности УМЗЧ выгодно применять транзисторы с высоким значением коэффициента передачи тока.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 1168; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь