Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Усилители постоянного тока. Дифференциальные каскады усиления.
Общие сведения Усилителями постоянного тока (УПТ) называются устройства, предназначенные для усиления медленно изменяющихся сигналов вплоть до нулевой частоты. На рисунке 5.1 приведена АЧХ УПТ. Рисунок 5.1. АЧХ УПТ
Для осуществления передачи сигналов частот, близких к нулю, в УПТ используется непосредственная (гальваническая) связь между каскадами. Однако такая связь приводит к необходимости решения специфических задач: ◆ согласование потенциальных уровней в соседних каскадах; ◆ уменьшения дрейфа (нестабильности) выходного уровня напряжения или тока. Способы построения УПТ Основная проблема, с которой сталкиваются разработчики УПТ, является дрейф нуля. Дрейфом нуля (нулевого уровня) называется самопроизвольное отклонение напряжения или тока на выходе УПТ от начального значения. Поскольку дрейф нуля наблюдается и при отсутствии сигнала на входе на входе УПТ, то его невозможно отличить от истинного сигнала. К физическим причинам, вызывающим дрейф нуля в УПТ, относятся: ◆ нестабильность источников питания; ◆ временная нестабильность (" старение" ) параметров транзисторов и резисторов; ◆ температурная нестабильность параметров транзисторов и резисторов; ◆ низкочастотные шумы; ◆ помехи и наводки. Наибольшую нестабильность вносит температурный фактор. Положение усугубляется наличием гальванической связи между каскадами, хорошо передающей медленные изменения сигнала, что приводит к эффекту каскадирования температурных нестабильностей каскадов от входа к выходу. Поскольку температурные изменения параметров усилительных элементов имеют закономерный характер (см. подразделы 2.2 и 2.10), то они могут быть в некоторой степени скомпенсированы теми же методами, что и в усилителях гармонических сигналов. Абсолютным дрейфом нуля Δ Uвых называется максимальное самопроизвольное отклонение выходного напряжения УПТ при замкнутом входе за определенный промежуток времени. Качество УПТ оценивают по напряжению дрейфа нуля, приведенного к входу усилителя: eдр = Δ Uвых/KU. Приведенный к входу дрейф нуля эквивалентен ложному входному сигналу, он ограничивает минимальный входной сигнал, т.е. определяет чувствительность УПТ. С целью снижения дрейфа нуля в УПТ используются: ◆ глубокие ООС; ◆ термокомпенсирующие элементы; ◆ преобразование постоянного тока в переменный, его усиление и последующее детектирование; ◆ построение УПТ по балансной схеме. УПТ прямого усиления, по сути, являются обычными многокаскадными усилителями с непосредственной связью. В качестве УПТ может использоваться усилитель, схема которого приведена на рисунке 3.4. В этом усилителе резисторы Rэ1, Rэ2 и Rэ3, помимо создания местных и общих цепей ООС, обеспечивают необходимое напряжение смещения в своих каскадах. В многокаскадном УПТ можно обеспечить требуемый режим транзисторов по постоянному току путем последовательного повышения потенциалов эмиттеров от входа к выходу, что обусловлено непосредственной межкаскадной связью " коллектор-эмиттер", потенциалы коллекторов тоже возрастают от входа к выходу. Возможно обеспечение режима каскадов УПТ путем уменьшения Rк от входа к выходу, однако в том и другом случае следствием будет уменьшение коэффициента усиления УПТ. В многокаскадных УПТ прямого усиления может происходить частичная компенсация дрейфа нуля. Так, положительное приращение тока коллектора первого транзистора вызовет отрицательное приращение тока базы и, следовательно, тока коллектора второго транзистора. На практике полная компенсация дрейфа нуля не достижима даже для одной температурной точки, тем не менее, в УПТ с четным числом каскадов наблюдается его снижение. В связи с тем, что данный УПТ имеет однополярное питание, на его входе и выходе присутствует некоторый постоянный потенциал, что не позволяет подключать низкоомные источник сигнала и нагрузку непосредственно между ними и общим проводом. В этом случае используется мостовая схема с включением RГ и Rн в диагонали входного и выходного мостов (рисунок 5.2). Рисунок 5.2. Мостовая схема включения источника сигнала и нагрузки в УПТ
Для расчета частотных и временных характеристик УПТ с прямым усилением можно использовать материалы подразделов 2.5 и 3.3, а также подраздела 2.9 в случае построения УПТ на ПТ. Для целей согласования потенциалов используют транзисторы различной проводимости, для лучшей температурной компенсации применяют диоды и стабилитроны. Применение двухполярного источника питания позволяет непосредственно подключать источник сигнала и нагрузку к УПТ, т.к. в этом случае обеспечены нулевые потенциалы на его входе и выходе. Указанные меры реализованы в схеме УПТ, приведенной на рисунке 5.3. Рисунок 5.3. Двухкаскадный УПТ
УПТ с прямым усилением на основе непосредственной связи между каскадами и глубокими ООС позволяют получить K0≤ 40 дБ при Uвх порядка десятков милливольт. В таких УПТ возникает проблема устранения паразитной ОС по цепям питания, ибо не представляется возможным применение обычных фильтров. УПТ прямого усиления имеют большой температурный дрейф (eдр составляет единицы милливольт на градус). Кроме температурного дрейфа в таких УПТ существенное влияние оказывают временной дрейф, нестабильность источников питания и низкочастотные шумы. Отмеченные недостатки в значительной мере преодолеваются в УПТ с преобразованием (модуляцией) сигнала. На рисунке 5.4 приведена структурная схема УПТ с преобразованием постоянного тока в переменный и даны эпюры напряжений, поясняющие принцип его работы. Входной сигнал постоянного напряжения Uвх преобразуется в пропорциональный ему сигнал переменного напряжения с помощью модулятора М, потом усиливается обычным усилителем гармонических сигналов У, а затем демодулятором ДМ преобразуется в сигнал постоянного напряжения Uн. Поскольку в усилителях переменного тока дрейф нуля не передается от каскада к каскаду (из-за наличия разделительных емкостей между каскадами), то в данном УПТ реализуется минимальный дрейф нуля. Рисунок 5.4. Структурная схема УПТ с преобразованием сигналов
В качестве модулятора можно использовать управляемые ключевые схемы, выполненные обычно на ПТ. Простейшим демодулятором является обычный двухполупериодный выпрямитель с фильтром на выходе. Следует заметить, что существует большое многообразие схемных решений как модуляторов, так и демодуляторов, рассмотрение которых не позволяет ограниченный объем данного пособия. В качестве недостатков УПТ с преобразованием сигнала следует отнести проблему реализации модуляторов малого уровня входного сигнала и повышенную сложность схемы. Достичь существенного улучшения электрических, эксплуатационных и массогабаритных показателей УПТ можно за счет их построения на основе балансных схем. Дифференциальные усилители В настоящее время наибольшее распространение получили УПТ на основе дифференциальных (параллельно-балансных или разностных) каскадов. Такие усилители просто реализуются в виде монолитных ИМС и широко выпускаются промышленностью (КТ118УД, КР198УТ1 и др.). На рисунке 5.5 приведена принципиальная схема простейшего варианта дифференциального усилителя (ДУ) на БТ. Рисунок 5.5. Схема ДУ
Любой ДУ выполняется по принципу сбалансированного моста, два плеча которого образованы резисторами Rк1 и Rк2, а два других — транзисторами VT1 и VT2. Сопротивление нагрузки Rн включено в диагональ моста. Резисторы цепи ПООСТ RОС1 и RОС2 обычно невелики или вообще отсутствуют, поэтому можно считать, что резистор Rэ подключен к эмиттерам транзисторов. Двухполярное питание позволяет обойтись на входах (выходах) ДУ без мостовых схем за счет снижения потенциалов баз (коллекторов) до потенциала общей шины. Рассмотрим работу ДУ для основного рабочего режима — дифференциального. За счет действия Uвх1 транзистор VT1 приоткрывается, и его ток эмиттера получает приращение Δ Iэ1, а за счет действия Uвх2 транзистор VT2 призакрывается, и ток его эмиттера получает отрицательное приращение –Δ Iэ2. Следовательно, результирующее приращение тока в цепи резистора Rэ при идеально симметричных плечах близко к нулю и, следовательно, ООС для дифференциального сигнала отсутствует. При анализе ДУ выделяют два плеча, представляющие собой каскады с ОЭ, в общую цепь эмиттеров транзисторов которых включен общий резистор Rэ, которым и задается их общий ток. В связи с этим представляется возможным при расчете частотных и временных характеристик ДУ пользоваться соотношениями подразделов 2.5 и 2.12 с учетом замечаний, приведенных в подразделе 4.4. Например, коэффициент усиления дифференциального сигнала KU диф будет равен в случае симметрии плеч (см. подраздел 4.4) KU диф=2·KU пл=K0, т.е. дифференциальный коэффициент усиления равен коэффициенту усиления каскада с ОЭ. ДУ отличает малый дрейф нуля, большой коэффициент усиления дифференциального (противофазного) сигнала KU диф и большой коэффициент подавления синфазных помех, т.е. малый коэффициент передачи синфазного сигнала KU сф. Для обеспечения качественного выполнения этих функций необходимо выполнить два основных требования. Первое из них состоит в обеспечении симметрии обоих плеч ДУ. Приблизиться к выполнению этого требования позволила микроэлектроника, поскольку только в монолитной ИМС близко расположенные элементы действительно имеют почти одинаковые параметры с одинаковой реакцией на воздействие температуры, старения и т.п. Второе требование состоит в обеспечении глубокой ООС для синфазного сигнала. В качестве синфазного сигнала для ДУ выступают помехи, наводки, поступающие на входы в фазе. Поскольку Rэ создает глубокую ПООСТ для обоих плеч ДУ, то для синфазного сигнала будет наблюдаться значительное уменьшение коэффициентов передачи каскадов с ОЭ, образующих эти плечи. Коэффициент усиления каждого плеча для синфазного сигнала можно представить какK0ОС каскада с ОЭ при глубокой ООС. Согласно подраздела 3.2 имеем: KU сф1 ≈ Rк1/Rэ, KU сф2 ≈ Rк2/Rэ. Теперь можно записать для KU сф всего ДУ: KU сф ≈ Δ Rк/Rэ, где Δ Rк = |Rк1 – Rк2|. Для оценки подавления синфазного сигнала вводят коэффициент ослабления синфазного сигнала (КОСС), равный отношению модулей коэффициентов передач дифференциального и синфазного сигналов. Из сказанного следует, что увеличение КОСС возможно путем уменьшения разброса номиналов резисторов в цепях коллекторов (в монолитных ИМС — не более 3%) и путем увеличения Rэ. Однако увеличение Rэ требует увеличения напряжения источника питания (что неизбежно приведет к увеличению рассеиваемой тепловой мощности в ДУ), и не всегда возможно из-за технологических трудностей реализации резисторов больших номиналов в монолитных ИМС. Решить эту проблему позволяет использование электронного эквивалента резистора большого номинала, которым является источник стабильного тока (ИСТ), варианты схем которого приведены на рисунке 5.6. Рисунок 5.6. ИСТ на БТ и ПТ
ИСТ подключается вместо Rэ (см. рисунок 5.5), а заданный ток и термостабильность обеспечивают элементы R1, R2, Rэ и VD1 (рисунок 5.6а), и R1 (рисунок 5.6б). Для реальных условий ИСТ представляет собой эквивалент сопротивления для изменяющегося сигнала номиналом до единиц мегом, а в режиме покоя — порядка единиц килоом, что делает ДУ экономичным по питанию. Использование ИСТ позволяет реализовать ДУ в виде экономичной ИМС, с КОСС порядка 100 дБ. При использовании ПТ характер построения ДУ не меняется, следует только учитывать особенности питания и термостабилизации ПТ. Схемы включения ДУ Можно выделить четыре схемы включения ДУ: симметричный вход и выход, несимметричный вход и симметричный выход, симметричный вход и несимметричный выход, несимметричный вход и выход. Схема включения ДУ симметричный вход и выход приведена на рисунке 5.7 и в особых комментариях не нуждается, такая схема включения применяется при каскадировании ДУ. Рисунок 5.7. Схема включения ДУ «симметричный вход и выход»
Схема включения ДУ несимметричный вход и симметричный выход рассматривалась ранее (см. рисунок 4.9). Схема включения ДУ симметричный вход и несимметричный выход приведена на рисунке 5.8. Рисунок 5.8. Схема включения ДУ «симметричный вход — несимметричный выход»
Такая схема включения ДУ применяется в случае необходимости перехода от симметричного источника сигнала (либо симметричного тракта передачи) к несимметричной нагрузке (несимметричному тракту передачи). Нетрудно показать, что дифференциальный коэффициент усиления при таком включении будет равен половинеKU диф при симметричной нагрузке. Вместо резисторов Rк в ДУ часто используют транзисторы, выполняющие функции динамических нагрузок. В рассматриваемом варианте включения ДУ целесообразно использовать в качестве динамической нагрузки так называемое токовое зеркало, образованное транзисторами VT3 и VT4 (рисунок 5.9). Рисунок 5.9. Схема ДУ с токовым зеркалом
При подаче на базу транзистора VT1 положительной полуволны гармонического сигналаUвх1, в цепи транзистора VT3 (включенного по схеме диода) возникает приращение тока Δ Iк1. За счет этого тока возникает приращение напряжения между базой и эмиттером VT3, которое является приращением входного напряжения для транзистора VT4. Таким образом, в цепи коллектор-эмиттер VT4 возникает приращение тока, практически равное Δ Iк1, поскольку в ДУ плечи симметричны. В рассматриваемый момент времени на базу транзистора VT2 подается отрицательная полуволна входного гармонического сигналаUвх2. Следовательно, в цепи его коллектора появилось отрицательное приращение тока Δ Iк2. При этом приращение тока нагрузки ДУ равно Δ Iк1+Δ Iк2, т.е. ДУ с отражателем тока обеспечивает большее усиление дифференциального сигнала. Необходимо также отметить, что для рассматриваемого варианта ДУ в режиме покоя ток нагрузки равен нулю. При несимметричном входе и выходе работа ДУ в принципе не отличается от случая несимметричный вход — симметричный выход. В зависимости от того, с какого плеча снимается выходной сигнал, возможно получение синфазного или противофазного выходного сигнала, как это получается в фазоинверсном каскаде на основе ДУ (см. подраздел 4.4). Точностные параметры ДУ К точностным параметрам ДУ относятся паразитные напряжения и токи, имеющие место в режиме покоя, но оказывающие влияние на качество усиления рабочего сигнала. В реальном ДУ за счет асимметрии плеч на выходе устройства всегда присутствует паразитное напряжение между выходами. Для сведения его к нулю на вход (плеча) необходимо подать компенсирующий сигнал — напряжение смещения нуля Uсм, представляющее собой кажущийся входной дифференциальный сигнал. Напряжение Uсм порождается, в основном, разбросом величин обратных токов эмиттерных переходов Iэбо1 и Iэбо2 (U'см), и разбросом номиналов резисторов Rк1 и Rк2 (U" см). Для этих напряжений можно записать: U'см = φ T· ln(Iэбо1/Iэбо2), U" см = 2· φ T· Δ Rк/Rк. Зависимость Uсм от температуры представляется еще одним точностным параметром - температурной чувствительностью. Температурная чувствительность dUсм/dT имеет размерность мкВ/град и определяется как разность ТКН эмиттерных переходов транзисторов плеч и уменьшается пропорционально уменьшению Uсм. Следующим точностным параметром ДУ является ток смещения Δ Iвх, представляющий собой разбаланс (разность) входных токов (токов баз транзисторов). Протекая через сопротивление источника сигнала Rг, ток смещения создает на нем падение напряжения, действие которого равносильно ложному дифференциальному сигналу. Ток смещения можно представить как Δ Iвх = Iэ01/H21Э1 – Iэ02/H21Э2. Средний входной ток Iвх ср также является точностным параметром ДУ. Его можно представить как Iвх ср = (Iб01 + Iб02)/2 = Iэ0/2H21Э. Протекая через Rг, ток Iвх срсоздает на нем падение напряжения, действующее как синфазный входной сигнал. Хотя и ослабленное в KUсф раз, оно все же вызовет на выходе ДУ разбаланс потенциалов. Температурные зависимости тока смещения и среднего входного тока можно учесть через температурную зависимость H21Э. Отметим, что обычно Iвх ср> Δ Iвх. В ДУ на ПТ основным точностным параметром является Uсм, которое обычно больше, чем в ДУ на БТ. В настоящее время ДУ представляют собой основной базовый каскад аналоговых ИМС, в частности, ДУ является входным каскадом любого операционного усилителя. Операционные усилители. Операционный усилитель ( ОУ, OpAmp) — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. Как правило, ОУ используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы. В настоящее время ОУ получили широкое применение как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов. Операционный усилитель изначально был спроектирован для выполнения математических операций (отсюда его название), путем использования напряжения как аналоговой величины. Такой подход лежит в основе аналоговых компьютеров, в которых ОУ использовались для моделирования базовых математических операций (сложение, вычитание, интегрирование, дифференцирование и т.д.). Однако идеальный ОУ является многофункциональным схемотехническим решением, он имеет множество применений помимо математических операций. Реальные ОУ, основанные на транзисторах, электронных лампах или других активных компонентах, выполненные в виде дискретных или интегральных схем, являются приближением к идеальным. Первый широко доступный ОУ в интегральном исполнении, был выпущен ещё в далеких 1960х годах. Это был легендарный μ A709 — ОУ фирмы Fairchild, выполненный по биполярнойтехнологии, разработанный Робертом Видларом (англ. Robert J. Widlar) в 1965 году. Почти сразу же на замену μ A709 появился 741, который имел лучшие харарактеристики, был более стабилен и прост в использовании. ОУ μ A741 производится до сих пор, он стал поистине вездесущим в электронике — многие производители выпускают версии этого классического чипа (их можно узнать по числу " 741" в наименовании). Позднее были разработаны ОУ и на другой элементной базе: на полевых транзисторах с p-n переходом (конец 1970х) и с изолированным каналом (начало 1980х), что позволило существенно улучшить ряд характеристик. Многие из более современных ОУ могут быть установлены в схемы, спроектированные для 741 без каких-либо доработок, при этом характеристики схемы только улучшатся. Применение ОУ в электронике чрезвычайно широко — операционный усилитель, вероятно, наиболее часто встречающийся элемент в аналоговой схемотехнике. Добавление лишь нескольких внешних компонент делает из ОУ конкретную схему аналоговой обработки сигналов. Многие стандартные ОУ сто́ ят всего несколько центов в крупных партиях, но усилители с нестандартными характеристиками (в интегральном или дискретном исполнении) могут стоить $100 и выше. Обозначения Обозначение операционного усилителя на схемах На рисунке показано схематичное изображение ОУ здесь: § V+: неинвертирующий вход § V− : инвертирующий вход § Vout: выход § VS+: плюс источника питания (также может обозначаться как VDD, VCC, или VCC+) § VS− : минус источника питания (также может обозначаться как VSS, VEE, или VCC− ) Указанные пять выводов присутствуют в любом ОУ, они абсолютно необходимы для его функционирования. Помимо этого, некоторые ОУ могут иметь дополнительные выводы, предназначенные для: § установки тока покоя § частотной коррекции § балансировки (коррекции смещения) и ряда других функций. Выводы питания (VS+ и VS− ) могут быть обозначены по-разному (см. выводы питания интегральных схем). Вне зависимости от обозначений смысл остается одним и тем же. Часто выводы питания не рисуют на схеме, чтобы не загромождать ее несущественными деталями, при этом способ подключения этих выводов явно не указывается или даже считается очевидным (особенно часто это происходит при изображении одного усилителя из микросхемы с четырьмя усилителями с общими выводами питания). При обозначении ОУ на схемах можно менять местами инвертирующий и неинвертирующий входы, если это удобно; выводы питания, как правило, всегда располагают единственным способом (положительный вверху). Основы функционирования Питание В общем случае ОУ использует двуполярное питание, то есть источник питания имеет три вывода с потенциалами: § U+ (к нему подключается VS+) § 0 § U- (к нему подключается VS-) Вывод источника питания с нулевым потенциалом непосредственно к ОУ обычно не подключается, но, как правило, является общей точкой схемы и используется для создания обратной связи. Поэтому часто вместо двуполярного используется более простое однополярное, а общая точка создаётся искусственно или совмещается с отрицательной шиной питания. ОУ способны работать в широком диапазоне напряжений источников питания, типичное значение для ОУ общего применения от ±1, 5 В до ±15 В при двуполярном питании (то есть U+=1, 5…15 В, U-=-15…-1, 5 В, допустим некоторый перекос). Далее вопросы питания ОУ будут рассмотрены подробнее. Простейшее включение ОУ Рассмотрим работу ОУ как отдельного дифференциального усилителя, то есть без включения в рассмотрение каких-либо внешних компонентов. В этом случае ОУ ведёт себя как обычный усилитель с дифференциальным входом, то есть поведение ОУ описывается следующим образом:
здесь § Vout: напряжение на выходе § V+: напряжение на неинвертирующем входе § V− : напряжение на инвертирующем входе § Gopenloop: коэффициент усиления с разомкнутой петлёй обратной связи Все напряжения считаются относительно общей точки схемы. Рассматриваемый способ включения ОУ (без обратной связи) практически не используется[1] вследствие присущих ему серьёзных недостатков: § Коэффициент усиления с разомкнутой петлёй обратной связи Gopenloop нормируется в очень широких пределах и может изменяться в тысячи раз (зависит сильнее всего от частоты сигнала и температуры). § Коэффициент усиления очень велик (типичное значение 106 на постоянном токе) и не поддаётся регулировке. § Точка отсчёта входного и выходного напряжений не поддаются регулировке. Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 3962; Нарушение авторского права страницы