Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Коэффициенты накопления БП в различных объектах экосистемы Балтийского моря (Израэль, 1989)
Для БП доказаны токсичность, канцерогенность, мутагенность, тератогенность, действие на репродуктивную способность рыб. Кроме того, как и другие трудноразложимые вещества, БП способен к биоаккумуляции в пищевых цепях и, соответственно, представляет опасность для человека. Бензол. Бензол представляет собой бесцветную жидкость с характерным запахом. В поверхностные воды бензол поступает с предприятий и производств основного органического синтеза, нефтехимической, химико-фармацевтической промышленности, производства пластмасс, взрывчатых веществ, ионообменных смол, лаков и красок, искусственных кож, а также со сточными водами мебельных фабрик. В стоках коксохимических заводов бензол содержится в концентрациях 100–160 мг/дм3, в сточных водах производства капролактама – 100 мг/дм3, производства изопропилбензола – до 20000 мг/дм3. Источником загрязнения акваторий может быть транспортный флот (применяется в моторном топливе для повышения октанового числа). Бензол используется также в качестве ПАВ. Бензол быстро испаряется из водоемов в атмосферу (период полуиспарения составляет 37, 3 минуты при 20°С). Порог ощущения запаха бензола в воде составляет 0, 5 мг/дм3 при 20°С. При 2, 9 мг/дм3 запах характеризуется интенсивностью в 1 балл, при 7, 5 мг/дм3 – в 2 балла. Мясо рыб приобретает неприятный запах при концентрации 10 мг/дм3. При 5 мг/дм3 запах исчезает через сутки, при 10 мг/дм3 интенсивность запаха за сутки снижается до 1 балла, а при 25 мг/дм3 запах снижается до 1 балла через двое суток. Привкус при содержании бензола в воде 1, 2 мг/дм3 измеряется в 1 балл, при 2, 5 мг/дм3 – в 2 балла. Наличие в воде бензола (до 5 мг/дм3) не изменяет процессы биологического потребления кислорода, так как под влиянием биохимических процессов в воде бензол окисляется слабо. В концентрациях 5–25 мг/дм3 бензол не задерживает минерализации органических веществ, не влияет на процессы бактериального самоочищения водоемов. В концентрации 1000 мг/дм3 бензол тормозит самоочищение разведенных сточных вод, а в концентрации 100 мг/дм3 – процесс очистки сточных вод в аэротенках. При содержании 885 мг/дм3 бензол сильно задерживает брожение осадка в метантенках. ПДКв – 0, 5 мг/дм3 (лимитирующий показатель вредности – санитарно-токсикологический), ПДКвр – 0, 5 мг/дм3 (лимитирующий показатель вредности – токсикологический). Фенолы. Фенолы представляют собой производные бензола с одной или несколькими гидроксильными группами. Их принято делить на две группы – летучие с паром фенолы (фенол, крезолы, ксиленолы, гваякол, тимол) и нелетучие фенолы (резорцин, пирокатехин, гидрохинон, пирогаллол и другие многоатомные фенолы). Фенолы в естественных условиях образуются в процессах метаболизма водных организмов, при биохимическом распаде и трансформации органических веществ, протекающих как в водной толще, так и в донных отложениях. Фенолы являются одним из наиболее распространенных загрязнений, поступающих в поверхностные воды со стоками предприятий нефтеперерабатывающей, сланцеперерабатывающей, лесохимической, коксохимической, анилинокрасочной промышленности и др. В сточных водах этих предприятий содержание фенолов может превосходить 10–20 г/дм3 при весьма разнообразных сочетаниях. Превышение естественного фона по фенолу может служить указанием на загрязнение водоемов. В загрязненных фенолами природных водах содержание их может достигать десятков и даже сотен микрограммов в 1 дм3. Фенолы – соединения нестойкие и подвергаются биохимическому и химическому окислению. Простые фенолы подвержены главным образом биохимическому окислению. При концентрации более 1 мг/дм3 разрушение фенолов протекает достаточно быстро, убыль фенолов составляет 50–75 % за трое суток, при концентрации несколько десятков микрограммов в 1 дм3 этот процесс замедляется, и убыль за то же время составляет 10–15 %. Быстрее всех разрушается собственно фенол, медленнее крезолы, еще медленнее ксиленолы. Многоатомные фенолы разрушаются в основном путем химического окисления. Концентрация фенолов в поверхностных водах подвержена сезонным изменениям. В летний период содержание фенолов падает (с ростом температуры увеличивается скорость распада). Сброс фенольных вод в водоемы и водотоки резко ухудшает их общее санитарное состояние, оказывая влияние на живые организмы не только своей токсичностью, но и значительным изменением режима биогенных элементов и растворенных газов (кислорода, углекислого газа). В результате хлорирования воды, содержащей фенолы, образуются устойчивые соединения хлорфенолов, малейшие следы которых (0, 1 мкг/дм3) придают воде характерный привкус. В токсикологическом и органолептическом отношении фенолы неравноценны. Летучие с паром фенолы более токсичны и обладают более интенсивным запахом при хлорировании. Наиболее резкие запахи дают простой фенол и крезолы. ПДКв для фенола установлена 0, 001 мг/дм3 (лимитирующий показатель вредности – органолептический), ПДКвр – 0, 001 мг/дм3 (лимитирующий показатель вредности – рыбохозяйственный). Спирты. Метанол. Метанол попадает в водоемы со сточными водами производств получения и применения метанола. В сточных водах предприятий целлюлозно-бумажной промышленности содержится 4, 5–58 г/дм3 метанола, производств фенолоформальдегидных смол – 20–25 г/дм3, лаков и красок 2 г/дм3, синтетических волокон и пластмасс – до 600 мг/дм3, в сточных водах генераторных станций работающих на буром, каменном угле, торфе, древесине – до 5 г/дм3. При попадании в воду метанол снижает содержание в ней О2 (вследствие окисления метанола). Концентрация выше 4 мг/дм3 влияет на санитарный режим водоемов. При содержании 200 мг/дм3 наблюдается торможение биологической очистки сточных вод. Порог восприятия запаха метанола составляет 30–50 мг/дм3. Концентрация 3 мг/дм3 стимулирует рост сине-зеленых водорослей и нарушает потребление кислорода дафниями. Летальные концентрации для рыб составляют 0, 25–17 г/дм3. Метанол является сильным ядом, обладающим направленным действием на нервную и сердечно-сосудистую системы, зрительные нервы, сетчатку глаз. Механизм действия метанола связан с его метаболизмом по типу летального синтеза с образованием формальдегида и муравьиной кислоты, далее окисляющихся до СО2. Поражение зрения обусловлено снижением синтеза АТФ в сетчатке глаза. ПДКв – 3 мг/дм3 (лимитирующий показатель вредности – санитарно-токсикологический), ПДКвр – 0, 1 мг/дм3 (лимитирующий показатель вредности – санитарно-токсикологический). Этиленгликоль. Этиленгликоль попадает в поверхностные воды со сточными водами производств, где он получается или применяется (текстильная, фармацевтическая, парфюмерная, табачная, целлюлозно-бумажная промышленности). Токсическая концентрация для рыб составляет не более 10 мг/дм3, для кишечной палочки – 0, 25 мг/дм3. Этиленгликоль очень токсичен. При попадании в желудок действует главным образом на ЦНС и почки, а также вызывает гемолиз эритроцитов. Токсичны и метаболиты этиленгликоля – альдегиды и щавелевая кислота, обусловливающая образование и накопление в почках оксалатов кальция. ПДКв – 1, 0 мг/дм3 (лимитирующий показатель вредности – санитарно-токсикологический), ПДКвр – 0, 25 мг/дм3 (лимитирующий показатель вредности – санитарно-токсикологический). Органические кислоты. Органические кислоты относятся к числу наиболее распространенных компонентов природных вод различного происхождения и нередко составляют значительную часть всего органического вещества в этих водах. Состав органических кислот и их концентрация определяются с одной стороны внутриводоемными процессами, связанными с жизнедеятельностью водорослей, бактерий и животных организмов, с другой – поступлением этих веществ извне. Органические кислоты образуются за счет следующих внутриводоемных процессов: · прижизненных выделений в результате нормальных физиологических процессов здоровых клеток; · посмертных выделений, связанных с отмиранием и распадом клеток; · выделений сообществами, связанных с биохимическим взаимодействием различных организмов, например водорослей и бактерий; · ферментативного разложения высокомолекулярных органических веществ типа углеводородов, протеинов и липидов. Поступление органических кислот в водные объекты извне возможно с поверхностным стоком, особенно в период половодья и паводков, с атмосферными осадками, промышленными и хозяйственно-бытовыми сточными водами и с водами, сбрасываемыми с орошаемых полей. Данные о содержании и составе органических кислот необходимы при изучении процессов химического выветривания, миграции элементов, образования осадочных пород, а также при решении вопросов о взаимоотношении водных организмов со средой, поскольку органические кислоты служат одним из источников углерода и энергии для большинства этих организмов. Концентрация органических кислот в речных водах колеблется от n·10 до n·102 ммоль/дм3. Амплитуда внутригодовых колебаний достигает нередко многих сотен процентов. Ряд высших жирных кислот присутствуют в природных водах в очень незначительных концентрациях. Концентрации пропионовой и уксусной кислот колеблются от n·10 до n·102 мкг/дм3. Летучие кислоты. Под летучими кислотами понимают сумму концентраций муравьиной и уксусной кислот. В природных водах в небольших количествах муравьиная кислота образуется в процессах жизнедеятельности и посмертного разложения водных организмов и биохимической трансформации содержащихся в воде органических веществ. Ее повышенная концентрация связана с поступлением в водные объекты сточных вод предприятий, производящих формальдегид и пластические массы на его основе. Муравьиная кислота мигрирует главным образом в растворенном состоянии, в виде ионов и недиссоциированных молекул, количественное соотношение между которыми определяется константой диссоциации К25°С = 2, 4.10-4 и значениями рН. При поступлении муравьиной кислоты в водные объекты она разрушается главным образом под влиянием биохимических процессов. В незагрязненных речных и озерных водах муравьиная кислота обнаружена в концентрациях 0–830 мкг/дм3, в снеговых – 46–78 мкг/дм3, в грунтовых – до 235 мкг/дм3, в морских – до 680 мкг/дм3. Концентрация муравьиной кислоты подвержена заметным сезонным колебаниям, что определяется главным образом интенсивностью биохимических процессов, протекающих в воде. ПДКв – 3, 5 мг/дм3 (лимитирующий показатель вредности – общесанитарный), ПДКвр – 1, 0 мг/дм3 (лимитирующий показатель вредности – токсикологический). ПДКв уксусной кислоты составляет 1, 0 мг/дм3 (лимитирующий показатель вредности – общесанитарный), ПДКвр – 0, 01 мг/дм3 (лимитирующий показатель вредности – токсикологический). Гумусовые кислоты. Гуминовые и фульвокислоты, объединяемые под названием гумусовые кислоты, нередко составляют значительную долю органического вещества природных вод и представляют собой сложные смеси биохимически устойчивых высокомолекулярных соединений. Главным источником поступления гумусовых кислот в природные воды являются почвы и торфяники, из которых они вымываются дождевыми и болотными водами. Значительная часть гумусовых кислот вносится в водоемы вместе с пылью и образуется непосредственно в водоеме в процессе трансформации " живого органического вещества". Гумусовые кислоты в поверхностных водах находятся в растворенном, взвешенном и коллоидном состояниях, соотношения между которыми определяются химическим составом вод, рН, биологической ситуацией в водоеме и другими факторами. Наличие в структуре фульво- и гуминовых кислот карбоксильных и фенолгидроксильных групп, аминогрупп способствует образованию прочных комплексных соединений гумусовых кислот с металлами. Некоторая часть гумусовых кислот находится в виде малодиссоциированных солей – гуматов и фульватов. В кислых водах возможно существование свободных форм гуминовых и фульвокислот. Гумусовые кислоты в значительной степени влияют на органолептические свойства воды, создавая неприятный вкус и запах, затрудняют дезинфекцию и получение особо чистой воды, ускоряют коррозию металлов. Они оказывают влияние также на состояние и устойчивость карбонатной системы, ионные и фазовые равновесия и распределение миграционных форм микроэлементов. Повышенное содержание гумусовых кислот может оказывать отрицательное влияние на развитие водных растительных и животных организмов в результате резкого снижения концентрации растворенного кислорода в водоеме, идущего на их окисление, и их разрушающего влияния на устойчивость витаминов. В то же время при разложении гумусовых кислот образуется значительное количество ценных для водных организмов продуктов, а их органоминеральные комплексы представляют наиболее легко усваиваемую форму питания растений микроэлементами. Почвенные кислоты: гуминовые (в щелочной среде) и особенно хорошо растворимые фульвокислоты играют наибольшую роль в миграции тяжелых металлов. Гуминовые кислоты содержат циклические структуры и различные функциональные группы (гидроксильные, карбонильные, карбоксильные, аминогруппы и др.). Молекулярная масса их колеблется в широком интервале (от 500 до 200 000 и более). Относительная молекулярная масса условно принимается равной 1300–1500. Содержание гуминовых кислот в поверхностных водах обычно составляет десятки и сотни микрограммов в 1 дм3 по углероду, достигая нескольких миллиграммов в 1 дм3 в природных водах лесных и болотистых местностей, придавая им характерный бурый цвет. В воде многих рек гуминовые кислоты не обнаруживаются. Фульвокислоты являются частью гумусовых кислот, не осаждающихся при нейтрализации из раствора органических веществ, извлеченных из торфов и бурых углей обработкой щелочью. Фульвокислоты представляют соединения типа оксикарбоновых кислот с меньшим относительным содержанием углерода и более выраженными кислотными свойствами. Хорошая растворимость фульвокислот по сравнению с гуминовыми кислотами является причиной их более высоких концентраций и распространения в поверхностных водах. Содержание фульвокислот, как правило, превышает содержание гуминовых кислот в 10 раз и более. Азот органический. Под " органическим азотом" понимают азот, входящий в состав органических веществ, таких, как протеины и протеиды, полипептиды (высокомолекулярные соединения), аминокислоты, амины, амиды, мочевина (низкомолекулярные соединения). Значительная часть азотсодержащих органических соединений поступает в природные воды в процессе отмирания организмов, главным образом фитопланктона, и распада их клеток. Концентрация этих соединений определяется биомассой гидробионтов и скоростью указанных процессов. Другим важным источником азотсодержащих органических веществ являются прижизненные их выделения водными организмами. К числу существенных источников азотсодержащих соединений относятся также атмосферные осадки, в которых концентрация азотсодержащих органических веществ близка к наблюдающейся в поверхностных водах. Значительное повышение концентрации этих соединений нередко связано с поступлением в водные объекты промышленных, сельскохозяйственных и хозяйственно-бытовых сточных вод. На долю органического азота приходится 50–75 % общего растворенного в воде азота. Концентрация органического азота подвержена значительным сезонным изменениям с общей тенденцией к увеличению в вегетационный период (1, 5–2, 0 мг/дм3) и уменьшению в период ледостава (0, 2–0, 5 мг/дм3). Распределение органического азота по глубине неравномерно – повышенная концентрация наблюдается, как правило, в зоне фотосинтеза и в придонных слоях воды. Амины. К основным источникам образования и поступления в природные воды аминов следует отнести: · декарбоксилирование при распаде белковых веществ под воздействием декарбоксилаз бактерий и грибов и аминирование; · водоросли; · атмосферные осадки; · сточные воды анилино-красочных предприятий. Амины присутствуют преимущественно в растворенном и отчасти в сорбированном состоянии. С некоторыми металлами они могут образовывать довольно устойчивые комплексные соединения. Концентрация аминов в воде рек, водохранилищ, озер, атмосферных осадках колеблется в пределах 10 – 200 мкг/дм3. Более низкое содержание характерно для малопродуктивных водных объектов. Амины токсичны. Обычно принято считать, что первичные алифатические амины токсичнее вторичных и третичных, диамины токсичнее моноаминов; изомерные алифатические амины более токсичны, чем алифатические амины нормального строения; моноамины с большей вероятностью обладают гепатотоксичностью, а диамины – нефротоксичностью. Наибольшей токсичностью и потенциальной опасностью среди алифатических аминов характеризуются непредельные амины из-за наиболее выраженной у них способности угнетать активность аминооксидаз. Амины, присутствуя в водных объектах, отрицательно влияют на органолептические свойства воды, могут усугублять заморные явления. ПДКв для различных видов аминов – от 0, 01 до 170 мг/дм3. Сера органическая. Метилмеркаптан является продуктом метаболизма живых клеток. Он также поступает со стоками предприятий целлюлозной промышленности (0, 05 – 0, 08 мг/дм3). В водном растворе метилмеркаптан является слабой кислотой и частично диссоциирует (степень диссоциации зависит от рН среды). При рН 10, 5 50 % метилмеркаптана находится в ионной форме, при рН 13 происходит полная диссоциация. Метилмеркаптан стабилен менее 12 часов, образует соли – меркаптиды. ПДКв – 0, 0002 мг/дм3 (лимитирующий показатель вредности – органолептический). Диметилсульфид выделяется водорослями (Oedogonium, Ulothrix) в ходе нормальных физиологических процессов, имеющих существенное значение в круговороте серы. В поверхностные воды диметилсульфид может поступать также со стоками предприятий целлюлозной промышленности (0, 05 – 0, 08 мг/дм3). Концентрация диметилсульфида в морях достигает n·10-5 мг/дм3 (повышенное содержание наблюдается в местах скопления водорослей). Диметилсульфид не может долго сохраняться в воде водоемов (стабилен от 3 до 15 суток). Он частично подвергается превращениям при участии водорослей и микроорганизмов, а в основном испаряется в воздух. В концентрациях 1–10 мкг/дм3 диметилсульфид обладает слабой мутагенной активностью. ПДКв – 0, 01 мг/дм3 (лимитирующий показатель вредности – органолептический), ПДКвр – 0, 00001 мг/дм3 (лимитирующий показатель вредности – токсикологический). Карбонильные соединения. К карбонильным относятся соединения, содержащие карбонильные и карбоксильные группы (альдегиды, кетоны, кетокислоты, полуфункциональные карбонилсодержащие вещества). В природных водах карбонильные соединения могут появляться в результате прижизненных выделений водорослей, биохимического и фотохимического окисления спиртов и органических кислот, распада органических веществ типа лигнина, обмена веществ бактериобентоса. Постоянное присутствие карбонильных соединений среди кислородных соединений нефти и в воде, контактирующей с залежами углеводородов, позволяет рассматривать последние в качестве одного из источников обогащения природных вод этими веществами. Источником карбонильных соединений являются также наземные растения, в которых образуются альдегиды и кетоны алифатического ряда и фурановые производные. Значительная часть альдегидов и кетонов поступает в природные воды в результате деятельности человека. Основными факторами, обусловливающими уменьшение концентрации карбонильных соединений, являются их способность к окислению, летучесть и относительно высокая трофическая ценность отдельных групп карбонилсодержащих веществ. В поверхностных водах карбонильные соединения находятся в основном в растворенной форме. Средняя концентрация их в воде рек и водохранилищ колеблется от 1 до 6 мкмоль/дм3, несколько выше она (6–40 мкмоль/дм3) в озерах дистрофного типа. Максимальные концентрации в водах нефтяных и газонефтяных залежей – 40–100 мкмоль/дм3. В воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования нормируются отдельные соединения с карбонильной группой: циклогексанон ПДКв – 0, 2 мг/дм3 (лимитирующий показатель вредности – санитарно-токсикологический), формальдегид ПДКв – 0, 05 мг/дм3 (лимитирующий показатель вредности – санитарно-токсикологический). Ацетон. В природные воды ацетон поступает со сточными водами фармацевтических, лесохимических производств, производства лаков и красок, пластмасс, кинопленки, ацетилена, ацетальдегида, уксусной кислоты, оргстекла, фенола, ацетона. В концентрациях 40–70 мг/дм3 ацетон придает воде запах, 80 мг/дм3 – привкус. В воде ацетон малостабилен – при концентрациях 20 мг/дм3 на седьмые сутки исчезает. Для водных организмов ацетон сравнительно малотоксичен. Токсические концентрации для молодых дафний составляют 8300, для взрослых – 12900 мг/дм3; при 9300 мг/дм3 дафнии гибнут через 16 часов. Ацетон – наркотик, поражающий все отделы ЦНС. Кроме того, он оказывает эмбриотоксическое действие. ПДКв – 2, 2 мг/дм3 (лимитирующий показатель вредности – общесанитарный), ПДКвр – 0, 05 мг/дм3 (лимитирующий показатель вредности – токсикологический). Формальдегид. Формальдегид поступает в водную среду с промышленными и коммунальными сточными водами. Он содержится в сточных водах производств основного органического синтеза, пластмасс, лаков, красок, лекарственных препаратов, предприятий кожевенной, текстильной и целлюлозно-бумажной промышленности. В дождевой воде городских районов зарегистрировано присутствие формальдегида. Формальдегид – сильный восстановитель. Он конденсируется с аминами, с аммиаком образует уротропин. В водной среде формальдегид подвергается биодеградации. В аэробных условиях при 20°С разложение продолжается около 30 часов, в анаэробных – примерно 48 часов. В стерильной воде формальдегид не разлагается. Биодеградация в водной среде обусловлена действием Pseudomonas, Flavobacterium, Mycobacterium, Zanthomonas. Подпороговая концентрация, не влияющая на санитарный режим водоемов и сапрофитную микрофлору, составляет 5 мг/дм3; максимальная концентрация, не вызывающая при постоянном воздействии в течение сколь угодно длительного времени нарушение биохимических процессов, – 5 мг/дм3, максимальная концентрация, не влияющая на работу биологических очистных сооружений, – 1000 мг/дм3. При 10 мг/дм3 формальдегид оказывает токсическое действие на наиболее чувствительные виды рыб. При 0, 24 мг/дм3 ткани рыб приобретают неприятный запах. Формальдегид оказывает общетоксическое действие, вызывает поражение ЦНС, легких, печени, почек, органов зрения. Возможно кожно-резорбтивное действие. Формальдегид обладает раздражающим, аллергенным, мутагенным, сенсибилизирующим, канцерогенным действием. ПДКв – 0, 05 мг/дм3 (лимитирующий показатель вредности – санитарно-токсикологический), ПДКвр – 0, 25 мг/дм3 (лимитирующий показатель вредности – токсикологичекий). Углеводы. Под углеводами понимают группу органических соединений, которая объединяет моносахариды, их производные и продукты конденсации – олигосахариды и полисахариды. В поверхностные воды углеводы поступают главным образом вследствие процессов прижизненного выделения водными организмами и их посмертного разложения. Значительные количества растворенных углеводов попадают в водные объекты с поверхностным стоком в результате вымывания их из почв, торфяников, горных пород, с атмосферными осадками, со сточными водами дрожжевых, пивоваренных, сахарных, целлюлозно-бумажных и других заводов. В поверхностных водах углеводы находятся в растворенном и взвешенном состоянии в виде свободных редуцирующих сахаров (смесь моно, ди- и трисахаридов) и сложных углеводов. Концентрация в речных водах свободных редуцирующих сахаров и сложных углеводов в пересчете на глюкозу составляет 100–600 и 250–1000 мкг/дм3. В воде водохранилищ концентрация их соответственно равна 100–400 и 200–300 мкг/дм3, в воде озер пределы возможных концентраций редуцирующих сахаров 80–65000 мкг/дм3 и сложных углеводов 140–6900 мкг/дм3 – более широки, чем в реках и водохранилищах. В морских водах суммарная концентрация углеводов составляет 0–8 мг/дм3, в атмосферных осадках 0–4 мг/дм3. Наблюдается корреляция между содержанием углеводов и интенсивностью развития фитопланктона. Жиры. Жиры представляют собой полные сложные эфиры глицерина и жирных кислот (стеариновой, пальмитиновой, олеиновой). Жиры, присутствующие в природных водах, являются главным образом результатом метаболизма растительных и животных организмов и их посмертного разложения. Жиры образуются при фотосинтезе и биосинтезе и входят в состав внутриклеточных и резервных липидов. Высокие концентрации жиров в воде связаны со сбросом в водные объекты сточных вод предприятий пищевой и кожевенной промышленности, а также хозяйственно-бытовых сточных вод. Понижение содержания жиров в природных водах связано с процессами их ферментативного гидролиза и биохимического окисления. Жиры находятся в поверхностных водах в растворенном, эмульгированном и сорбированном взвешенными веществами и донными отложениями состояниях. Они входят в состав более растворимых сложных соединений с белками и углеводами, которые находятся в воде как в растворенном, так и в коллоидном состояниях. Попадая в водный объект в повышенных концентрациях, жиры ухудшают его кислородный режим, органолептические свойства воды, стимулируют развитие микрофлоры. Содержание жиров в поверхностных водах колеблется от сотых долей миллиграмма до нескольких миллиграммов в 1 дм3. Синтетические поверхностно-активные вещества (СПАВ). СПАВ представляют собой обширную группу соединений, различных по своей структуре, относящихся к разным классам. Эти вещества способны адсорбироваться на поверхности раздела фаз и понижать вследствие этого поверхностную энергию (поверхностное натяжение). В зависимости от свойств, проявляемых СПАВ при растворении в воде, их делят на анионоактивные вещества (активной частью является анион), катионоактивные (активной частью молекул является катион), амфолитные и неионогенные, которые совсем не ионизируются. Анионоактивные СПАВ в водном растворе ионизируются с образованием отрицательно заряженных органических ионов. Из анионоактивных СПАВ широкое применение нашли соли сернокислых эфиров (сульфаты) и соли сульфокислот (сульфонаты). Радикал R может быть алкильным, алкиларильным, алкилнафтильным, иметь двойные связи и функциональные группы. Катионоактивные СПАВ – вещества, которые ионизируются в водном растворе с образованием положительно заряженных органических ионов. К ним относятся четвертичные аммониевые соли, состоящие из: углеводородного радикала с прямой цепью, содержащей 12–18 атомов углерода; метильного, этильного или бензильного радикала; хлора, брома, иода или остатка метил- или этилсульфата. Амфолитные СПАВ ионизируются в водном растворе различным образом в зависимости от условий среды: в кислом растворе проявляют катионоактивные свойства, а в щелочном – анионоактивные. Неионогенные СПАВ представляют собой высокомолекулярные соединения, которые в водном растворе не образуют ионов. В водные объекты СПАВ поступают в значительных количествах с хозяйственно-бытовыми (использование синтетических моющих средств в быту) и промышленными сточными водами (текстильная, нефтяная, химическая промышленность, производство синтетических каучуков), а также со стоком с сельскохозяйственных угодий (в качестве эмульгаторов входят в состав инсектицидов, фунгицидов, гербицидов и дефолиантов). Главными факторами понижения их концентрации являются процессы биохимического окисления, сорбция взвешенными веществами и донными отложениями. Степень биохимического окисления СПАВ зависит от их химического строения и условий окружающей среды. По биохимической устойчивости, определяемой структурой молекул, СПАВ делят на мягкие, промежуточные и жесткие с константами скорости биохимического окисления, соответственно не менее 0, 3 сутки-1; 0, 3–0, 05 сутки-1; менее 0, 05 сутки-1. К числу наиболее легко окисляющихся СПАВ относятся первичные и вторичные алкилсульфаты нормального строения. С увеличением разветвления цепи скорость окисления понижается, и наиболее трудно разрушаются алкилбензолсульфонаты, приготовленные на основе тетрамеров пропилена. При понижении температуры скорость окисления СПАВ уменьшается и при 0–5°С протекает весьма медленно. Наиболее благоприятные для процесса самоочищения от СПАВ нейтральная или слабощелочная среды (рН 7–9). С повышением содержания взвешенных веществ и значительным контактом водной массы с донными отложениями скорость снижения концентрации СПАВ в воде обычно повышается за счет сорбции и соосаждения. При значительном накоплении СПАВ в донных отложениях в аэробных условиях происходит окисление микрофлорой донного ила. В случае анаэробных условий СПАВ могут накапливаться в донных отложениях и становиться источником вторичного загрязнения водоема. Максимальные количества кислорода (БПК), потребляемые 1 мг/дм3 различных ПАВ колеблется от 0 до 1, 6 мг/дм3. При биохимическом окислении СПАВ, образуются различные промежуточные продукты распада: спирты, альдегиды, органические кислоты и др. В результате распада СПАВ, содержащих бензольное кольцо, образуются фенолы. В поверхностных водах СПАВ находятся в растворенном и сорбированном состоянии, а также в поверхностной пленке воды водного объекта. В слабозагрязненных поверхностных водах концентрация СПАВ колеблется обычно в пределах тысячных и сотых долей миллиграмма в 1 дм3. В зонах загрязнения водных объектов концентрация повышается до десятых долей миллиграмма, вблизи источников загрязнения может достигать нескольких миллиграммов в 1 дм3. Попадая в водоемы и водотоки, СПАВ оказывают значительное влияние на их физико-биологическое состояние, ухудшая кислородный режим и органолептические свойства, и сохраняются там долгое время, так как разлагаются очень медленно. Отрицательным, с гигиенической точки зрения, свойством ПАВ является их высокая пенообразующая способность. Хотя СПАВ не являются высокотоксичными веществами, имеются сведения о косвенном их воздействии на гидробионтов. При концентрациях 5–15 мг/дм3 рыбы теряют слизистый покров, при более высоких концентрациях может наблюдаться кровотечение жабр. ПДКв СПАВ составляет 0, 5 мг/дм3, ПДКвр – 0, 1 мг/дм3. Смолистые вещества. Некоторые растения вырабатывают сложные по химическому составу смолистые вещества. Наиболее токсичны для рыб и представителей планктона смолистые вещества, выделяемые хвойными породами (сосна, ель). Смолистые вещества поступают в поверхностные воды в результате лесосплава, а также со стоками гидролизной промышленности (переработка непищевого растительного сырья). ПДКвр для смолистых веществ, вымываемых из хвойных пород древесины – ниже 2 мг/дм3 (лимитирующий показатель вредности – токсикологический). Водорастворимый сульфатный лигнин. Лигнин представляет собой высокомолекулярное соединение ароматической природы. Различают три класса лигнинов: лигнин хвойной древесины, лиственной древесины и травянистых растений. Общей структурной единицей всех видов лигнина является фенилпропан. Различия связаны с разным содержанием функциональных групп. В растворенной форме сульфатный лигнин поступает в поверхностные водоемы со сточными водами предприятий целлюлозно-бумажной промышленности (сульфатная варка целлюлозы). Важнейшим свойством лигнина является его склонность к реакциям конденсации. В природных водах лигнин разрушается примерно через 200 суток. При разложении лигнина появляются токсичные низкомолекулярные продукты распада (фенолы, метанол, карбоновые кислоты). ПДКв – 5 мг/дм3 (лимитирующий показатель вредности – органолептический), ПДКвр – 2 мг/дм3 (лимитирующий показатель вредности – токсикологический). Хлорорганические соединения. Хлорорганические соединения относят к суперэкотоксикантам – чужеродным веществам, которые отличаются уникальной биологической активностью, распространяются в окружающей среде далеко за пределы своего первоначального местонахождения и уже на уровне микропримесей оказывают негативное воздействие на живые организмы. К хлорорганическим соединениям относят полихлорированные диоксины, дибензофураны, бифенилы, а также хлорорганические пестициды. Диоксины хорошо растворимы в органических растворителях и практически нерастворимы в воде. Среди других характеристик диоксинов следует указать на их высокую адгезионную способность, в том числе к почве, частичкам золы, донным отложениям, что способствует их накоплению и миграции в виде комплексов с органическими веществами и поступлению в воздух, воду и пищевые продукты. Однако опасность диоксинов состоит не столько в острой токсичности, сколько в кумулятивном действии и отдаленных последствиях. В настоящее время признано недопустимым присутствие диоксинов в продуктах питания, воздухе и питьевой воде. Однако достичь этого при наличии в окружающей среде больших количеств указанных ксенобиотиков практически невозможно. Поэтому санитарно-гигиеническими службами и органами охраны природы большинства развитых стран установлены нормы допустимого поступления диоксинов в организм человека, а также предельно-допустимые концентрации или уровни их содержания в различных средах. Хлорированные бифенилы (трихлордифенил, бихлордифенил). В воду хлорированные бифенилы попадают главным образом за счет сброса промышленных отходов в реки, а также из отбросов судов. Они накапливаются в иловых отложениях водоемов (в воде рек и лиманов содержится 50–500 мг/дм3). В почву хлорированные бифенилы попадают при использовании ила в качестве удобрения и с полей орошения. Снижение содержания их в почве происходит благодаря испарению и биотрансформации: период полуразложения около 5 лет. Хлорированные бифенилы обнаружены во всех объектах окружающей среды и всех звеньях биологических цепей, в частности, яйцах птиц; они весьма устойчивы к воздействию факторов окружающей среды. Хлорированные бифенилы – высокотоксичные соединения, поражающие печень и почки. Их хроническое действие сходно с действием хлорпроизводных нафталина. Они вызывают порфирию: активируют микросомные ферменты печени. С повышением содержания хлора в молекуле хлорбифенилов это последнее свойство усиливается. Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 819; Нарушение авторского права страницы