Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Группы природных вод в зависимости от рН



Группа рН Примечание
Сильнокислые воды < 3 результат гидролиза солей тяжелых металлов (шахтные и рудничные воды)
Кислые воды 3–5 поступление в воду угольной кислоты, фульвокислот и других органических кислот в результате разложения органических веществ
Слабокислые воды 5–6, 5 присутствие гумусовых кислот в почве и болотных водах (воды лесной зоны)
Нейтральные воды 6, 5–7, 5 наличие в водах Ca(HCO3)2, Mg(HCO3)2
Слабощелочные воды 7, 5–8, 5 наличие в водах Ca(HCO3)2, Mg(HCO3)2
Щелочные воды 8, 5–9, 5 присутствие Na2CO3 или NaHCO3
Сильнощелочные воды 9, 5 присутствие Na2CO3 или NaHCO3

Растворенный кислород. Растворенный кислород находится в природной воде в виде молекул O2. На его содержание в воде влияют две группы противоположно направленных процессов: одни увеличивают концентрацию кислорода, другие уменьшают ее. К первой группе процессов, обогащающих воду кислородом, следует отнести:

· процесс абсорбции кислорода из атмосферы;

· выделение кислорода водной растительностью в процессе фотосинтеза;

· поступление в водоемы с дождевыми и снеговыми водами, которые обычно пересыщены кислородом.

Абсорбция кислорода из атмосферы происходит на поверхности водного объекта. Скорость этого процесса повышается с понижением температуры, с повышением давления и понижением минерализации. Аэрация – обогащение глубинных слоев воды кислородом – происходит в результате перемешивания водных масс, в том числе ветрового, вертикальной температурной циркуляции и т.д.

Фотосинтетическое выделение кислорода происходит при ассимиляции диоксида углерода водной растительностью (прикрепленными, плавающими растениями и фитопланктоном). Процесс фотосинтеза протекает тем сильнее, чем выше температура воды, интенсивность солнечного освещения и больше биогенных (питательных) веществ (P, N и др.) в воде. Продуцирование кислорода происходит в поверхностном слое водоема, глубина которого зависит от прозрачности воды (для каждого водоема и сезона может быть различной, от нескольких сантиметров до нескольких десятков метров).

К группе процессов, уменьшающих содержание кислорода в воде, относятся реакции потребления его на окисление органических веществ: биологическое (дыхание организмов), биохимическое (дыхание бактерий, расход кислорода при разложении органических веществ) и химическое (окисление Fe2+, Mn2+, NO2-, NH4+, CH4, H2S). Скорость потребления кислорода увеличивается с повышением температуры, количества бактерий и других водных организмов и веществ, подвергающихся химическому и биохимическому окислению. Кроме того, уменьшение содержания кислорода в воде может происходить вследствие выделения его в атмосферу из поверхностных слоев и только в том случае, если вода при данных температуре и давлении окажется пересыщенной кислородом.

В поверхностных водах содержание растворенного кислорода варьирует в широких пределах – от 0 до 14 мг/дм3 – и подвержено сезонным и суточным колебаниям. Суточные колебания зависят от интенсивности процессов его продуцирования и потребления и могут достигать 2, 5 мг/дм3 растворенного кислорода. В зимний и летний периоды распределение кислорода носит характер стратификации. Дефицит кислорода чаще наблюдается в водных объектах с высокими концентрациями загрязняющих органических веществ и в эвтрофированных водоемах, содержащих большое количество биогенных и гумусовых веществ.

Концентрация кислорода определяет величину окислительно-восстановительного потенциала и в значительной мере направление и скорость процессов химического и биохимического окисления органических и неорганических соединений. Кислородный режим оказывает глубокое влияние на жизнь водоема. Минимальное содержание растворенного кислорода, обеспечивающее нормальное развитие рыб, составляет около 5 мг/дм3. Понижение его до 2 мг/дм3 вызывает массовую гибель (замор) рыбы. Неблагоприятно сказывается на состоянии водного населения и пересыщение воды кислородом в результате процессов фотосинтеза при недостаточно интенсивном перемешивании слоев воды.

Таблица 10.4.

Содержание кислорода в водоемах с различной степенью загрязненности

Уровень загрязненности воды и класс качества Растворенный кислород
лето, мг/дм3 зима, мг/дм3 % насыщения
Очень чистые, I 14–13
Чистые, II 12–11
Умеренно загрязненные, III 7–6 10–9
Загрязненные, IV 5–4 5–4
Грязные, V 3–2 5–1
Очень грязные, VI

 

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого и санитарного водопользования содержание растворенного кислорода в пробе, отобранной до 12 часов дня, не должно быть ниже 4 мг/дм3 в любой период года; для водоемов рыбохозяйственного назначения концентрация растворенного в воде кислорода не должна быть ниже 4 мг/дм3 в зимний период (при ледоставе) и 6 мг/дм3 – в летний.

Относительное содержание кислорода в воде, выраженное в процентах его нормального содержания, называется степенью насыщения кислородом. Эта величина зависит от температуры воды, атмосферного давления и солености.

Окисляемость перманганатная и бихроматная (ХПК). Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая. Наиболее высокая степень окисления достигается методами бихроматной и иодатной окисляемости воды.

Окисляемость выражается в миллиграммах кислорода, пошедшего на окисление органических веществ, содержащихся в 1 дм3 воды.

Состав органических веществ в природных водах формируется под влиянием многих факторов. К числу важнейших относятся внутриводоемные биохимические процессы продуцирования и трансформации, поступления из других водных объектов, с поверхностными и подземными стоками, с атмосферными осадками, с промышленными и хозяйственно-бытовыми сточными водами. Образующиеся в водоеме и поступающие в него извне органические вещества весьма разнообразны по своей природе и химическим свойствам, в том числе по устойчивости к действию разных окислителей. Соотношение содержащихся в воде легко- и трудноокисляемых веществ в значительной мере влияет на окисляемость воды в условиях того или иного метода ее определения.

В поверхностных водах органические вещества находятся в растворенном, взвешенном и коллоидном состояниях. Последние в рутинном анализе отдельно не учитываются, поэтому различают окисляемость фильтрованных (растворенное органическое вещество) и нефильтрованных (общее содержание органических веществ) проб.

Величины окисляемости природных вод изменяются в пределах от долей миллиграммов до десятков миллиграммов в литре в зависимости от общей биологической продуктивности водоемов, степени загрязненности органическими веществами и соединениями биогенных элементов, а также от влияния органических веществ естественного происхождения, поступающих из болот, торфяников и т.п. Поверхностные воды имеют более высокую окисляемость по сравнению с подземными (десятые и сотые доли миллиграмма на 1 дм3), исключение составляют воды нефтяных месторождений и грунтовые воды, питающиеся за счет болот. Горные реки и озера характеризуются окисляемостью 2–3 мг О/дм3, реки равнинные – 5–12 мг О/дм3, реки с болотным питанием – десятки миллиграммов на 1 дм3. Окисляемость незагрязненных поверхностных вод проявляет довольно отчетливую физико-географическую зональность (табл. 10.5).

Окисляемость подвержена закономерным сезонным колебаниям. Их характер определяется, с одной стороны, гидрологическим режимом и зависящим от него поступлением органических веществ с водосбора, с другой, – гидробиологическим режимом.

Таблица 10.5.


Поделиться:



Популярное:

  1. Any и его производные имеют другое значение в утвердительном предложении.
  2. E) Горные породы, климат, почва, биокомпоненты, вода.
  3. Gerund переводится на русский язык существительным, деепричастием, инфинитивом или целым предложением.
  4. Hекотоpые мысли по поводy каpт ценностей
  5. I разделение – скотоводство от земледелия.
  6. I. Руководство к совершению Всенощного бдения.
  7. I.Расчет подающих трубопроводов системы горячего водоснабжения при отсутствии циркуляции.
  8. II. Прокомментируйте параллельные переводы и объясните необходимость использования приема конкретизации.
  9. II. Прокомментируйте параллельные переводы и объясните необходимость использования приема опущения.
  10. II. Прокомментируйте параллельные переводы и объясните необходимость использования приема примечаний.
  11. II. РАЗРЕШЕНИЕ НА ПРОИЗВОДСТВО ОГНЕВЫХ РАБОТ
  12. II. Руководство маневровой работой


Последнее изменение этой страницы: 2016-03-25; Просмотров: 1377; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь