Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Нуклоны теряют свою индивидуальность



 

Последней пример абстрактной симметрии, которому отводится главная роль в последующих главах, демонстрирует сильное ядерное взаимодействие между протонами и нейтронами. Эксперименты показывают, что величина и другие свойства этого взаимодействия не зависят от того, о каких частицах идет речь — протонах или нейтронах. Действительно, протоны и нейтроны удивительно похожи друг на друга. Их массы отличаются всего лишь на 0, 1%. У них одинаковые спины и на них одинаково действуют ядерные силы. Единственно, чем они отличаются, — это наличием у протона электрического заряда, но поскольку при ядерных взаимодействиях электрический заряд не имеет значения, он служит лишь меткой протона. Заряд позволяет распознавать протон и отличать его от нейтрона, но никак не сказывается на ядерном взаимодействии, связывающем протоны и нейтроны. Если протон лишить электрического заряда, то он утратит свою индивидуальность.

Тесное сходство протона и нейтрона наводит на мысль, что здесь существует симметрия. Действительно, на ядерных процессах никак не отразится, если бы мы каким-то образом смогли заменить все протоны нейтронами и наоборот. Можно пойти и дальше. Представим себе, что у нас есть волшебная ручка с указателем, поворачивая которую, мы можем превращать протоны в нейтроны. Предположим, когда указатель находится в верхнем положении, все рассматриваемые частицы — протоны; если же ручку повернуть на пол-оборота, так чтобы указатель был направлен вниз, все протоны превратятся в нейтроны (рис. 8). Разумеется, это чисто мысленный эксперимент, так как в действительности мы не можем превращать протоны в нейтроны, а нейтроны в протоны. Эта абстрактная модель позволяет нам обнаружить абстрактную симметрию, но она очень полезна, поскольку помогает понять природу сильного взаимодействия.

 

Рис.8 Волшебная ручка. Ее вращение позволяет постепенно изменять природу ядерных частиц. Когда указатель ручки находится в верхнем положении, частицы на 100 % представляют собой протоны (р). При повороте ручки частицы переходят в смешанное состояние — отчасти протон, отчасти нейтрон. Когда же Указатель направлен вниз, все протоны превращаются в нейтроны (n). Описанный процесс, несмотря на всю его условность, отражает фундаментальную симметрию ядерных сил.

 

Предположим теперь, что превращение протона в нейтрон происходит не скачком, а плавно по мере поворота волшебной ручки. Когда указатель находится в промежуточном положении, частицы не являются в чистом виде ни протонами, ни нейтронами, а представляют собой своего рода гибрид того и другого. По мере удаления указателя от положения, соответствующего на циферблате 12 ч, сродство с протоном у частиц убывает, а сродство с нейтроном растет. Возможно, не так-то просто представить себе, что такое сродство с протоном и о нейтроном или гибрид протона и нейтрона. Можно предложить другую интерпретацию промежуточного положения указателя: при наблюдении данная частица оказывается то протоном, то нейтроном. Частица утрачивает свою индивидуальность и хаотически переходит из одного состояния (например, “протон”) в другое (“нейтрон”). Когда указатель стоит в положении, близком к “12ч”, частица в основном находится в состоянии “протон”, и вероятность обнаружить при ее наблюдении протон близка к единице. По мере того как указатель приближается к “6ч”, вероятность обнаружить при наблюдении частицы нейтрон все возрастает. Когда указатель направлен строго вниз, вероятность обнаружить протон падает до нуля, и все 100% приходятся на нейтрон.

Если волшебная ручка снабжена двумя указателями, один из которых смотрит вверх, а другой — вниз (рис. 9), то вращая ручку, мы будем одновременно наблюдать превращение протонов в нейтроны, а нейтронов в протоны. Положение ручки, изображенное на рис. 9, а, соответствует нынешнему состоянию Вселенной. При повороте ручки (рис. 9, б) протоны начинают превращаться в нейтроны, а нейтроны — в протоны, и степень сродства с нейтронами у протонов равна степени сродства с протонами нейтронов. Когда же ручка совершит пол-оборота, все протоны превратятся в нейтроны, а нейтроны — в протоны.

Ручка с указателями — это не более чем удобный прием, позволяющий наглядно проиллюстрировать свойство симметрии ядерных сил. Применительно к рассматриваемой модели можно сказать, что в сущности ядерные силы не зависят от положения указателя. Направлен ли он вверх, вниз, вбок или под любым про” межуточным углом, ядерные 'силы останутся неизменными. Это свойство получило довольно громоздкое название — симметрия изотопического спина, или изотопическая симметрия. Слово “изотопический” здесь связано с тем, что ядра, отличающиеся только числом нейтронов, называются изотопами, а свойства симметрии, о которой идет речь, аналогичны свойствам собственного спина, упоминавшегося в гл. 2.

 

Рис.9 Волшебная ручка с двумя указателями позволяет описать взаимное превращение протонов и нейтронов. Черный указатель действует, как и на рис. 8, а светлый — описывает превращение всех нейтронов в протоны. Случай а соответствует реально наблюдаемому соотношению числа протонов и нейтронов. В случае б протоны частично переходят в нейтроны, а нейтроны — в равной степени в протоны. Когда ручка перейдет в положение в, все исходные протоны превратятся в нейтроны, а все нейтроны—в протоны. Вследствие фундаментальной симметрии ядерные силы не зависят от положения волшебной ручки.

 

 

Физика и фантазия

 

Понятие изотопического спина — великолепный пример роли абстрактного мышления в физике. Как мы увидим, введение этого понятия имело глубокие последствия. В реальном мире нет “волшебных ручек с указателями”, нет и устройств для измерения сродства с протонами у нейтронов и с нейтронами у протонов. Идея смешения индивидуальности протонов и нейтронов — плод чисто теоретической мысли, своего рода фантазия. Но логически она вполне допустима. Мы можем мысленно представить себе подобное, даже если в реальном мире это исключено. То, что воображаемый процесс может иметь самое непосредственное отношение к физике реального мира, возможно, покажется удивительным, но таким приемом очень эффективно пользуется современный физик. Свою науку он рассматривает как модель, описывающую реальный мир наблюдений. Эта модель может включать множество Дополнительных особенностей, которые, хотя сами по себе и не отражают реального опыта, играют важную роль в теории. Почему физикам приходится придумывать чисто умозрительные, абстрактные понятия для моделирования реального мира?

Разве нельзя ограничиться исключительно наблюдаемыми величинами? Ведь в конце концов теорию можно проверить только при конкретном наблюдении, и умозрительные особенности модели никогда не входят явно в предсказания теории, относящиеся к реальным наблюдениям. Так стоит ли вообще прибегать к чистому вымыслу?

Включение умозрительных понятий в физические теории — обычная практика, которую труднее всего объяснить неспециалисту. Разумеется, когда какой-нибудь конкретный “вымысел”, например изотопическая симметрия, приносит теории блестящий успех, физик может ответить: “Я воспользовался этой идеей потому, что она работает! ”.

Поразительно, каким же образом физик догадывается, какую именно абстракцию в духе кэрролловской “Алисы в Стране Чудес” следует ввести в теорию? Поскольку речь идет о чисто воображаемых понятиях, скептику может показаться, что годится любой вымысел: “Зачем выбирать то, что действительно встречается во внешнем мире, если можно придумать что угодно? ”. Диапазон выбора ничем не ограничен. Но как выбрать “то, что нужно”?

Дойдя в беседе с неспециалистом до этого момента, физик обычно начинает прибегать к таким словам, как красота, математическое изящество и симметрия. Хотя включение умозрительных, абстрактных идей, например калибровочной симметрии, логически не обязательно для построения удачной теории (в принципе все теории можно было бы формулировать, целиком основываясь на наблюдаемых величинах), использование абстрактных понятий позволяет иногда значительно упростить теорию, сделав ее более привлекательной.

Взять хотя бы представление о поле, оказавшееся столь результативным для физики и техники. Оно было введено Фарадеем и Максвеллом как некая абстракция. Мы не можем непосредственно ни увидеть электромагнитное поле, ни прикоснуться к нему. О том, что оно существует, мы знаем только по его действию на электрические заряды. Вместе с тем, так как поле порождается только другими электрическими зарядами, в действительности мы имеем дело с взаимодействием электрических зарядов. Но коль скоро наблюдаемы именно заряды, то зачем вообще вводить поле? Почему бы нам не говорить просто о том, каким образом заряды взаимодействуют между собой через пространство, и не сформулировать все уравнения теории электричества, пользуясь только понятием зарядов?

Ничего невозможного здесь действительно нет. Различие состоит лишь в том, что при этом получится громоздкая и сложная теория. Строго говоря, эти качества, по-видимому, невозможно оценить, но физик немедленно распознает их. Теория поля гораздо изящнее. Ее математический аппарат более естествен, гармоничен, взаимосвязан и более экономичен. И дает больше пищи для размышлений.

Последнее обстоятельство очень важно. Изящная, продуманная в деталях, абстрактная теория часто подсказывает новые пути развития физики, которые просто невозможно было бы увидеть, придерживаясь моделей, основанных исключительно на конкретных наблюдаемых величинах. Например, квантовая теория поля, столь важная для суперсилы и ряда последних достижений в области фундаментальных исследований, не смогла бы возникнуть, не получи понятие поля такого широкого распространения в физике.

Когда абстрактное понятие оказывается столь эффективным, что становится достоянием широких кругов неспециалистов, различие между реальным и умозрительным постепенно исчезает. Понятие, возникшее в воображении физика, становится привычным настолько, что как бы обретает реальность. Именно так произошло с энергией. Понятие энергии первоначально выглядело в физике абстрактной идеей. Популярность она обрела благодаря закону сохранения, согласно которому энергия не возникает из ничего и не уничтожается. Но что такое энергия? Разве можно ее видеть или осязать?

Когда груз поднимается над землей, совершается определенная работа. Мы говорим, что при совершении этой работы затрачивается энергия, но закон сохранения энергии утверждает, что энергия не исчезает бесследно, а только переходит в другую форму. Мы видим, как напрягаются мышцы человека, поднимающего тяжесть. Можно считать, что мы действительно наблюдаем энергию в действии, когда видим искаженные от напряжения черты лица и вздувшиеся бицепсы. Но вот вес поднят и спокойно лежит на платформе. Куда же девалась энергия? Можно ли по-прежнему видеть ее?

Физик скажет, что энергия запасена грузом, так как он находится теперь на некоторой высоте. В таком ответе скрыто представление о потенциальной энергии. Энергия в этом случае хотя и невидима, но может легко высвобождаться — стоит выбить опору из-под груза, как он тотчас рухнет вниз. Звук от удара груза о землю унесет часть энергии, высвободившейся при падении груза.

Итак, энергия — умозрительное, абстрактное понятие, но настолько вошедшее в наш обыденный лексикон, что мы приписываем ему реальное существование. “У меня не хватит энергии вскопать сад”, — утверждение такого рода не вызовет недоуменных взглядов. Никто не спросит у вас, какого цвета ваша энергия, не посоветует заполнить ею сосуд, чтобы измерить ее объем. Принято считать, что каждый обладает энергией, точно так же, как у каждого есть кожа и кости. Энергия — одно из наиболее устойчивых абстрактных понятий в физике. Оно необычайно упрощает описание широкого круга физических процессов. Закон сохранения энергии охватывает огромное множество экспериментальных фактов, которые, не будь понятия энергии, пришлось бы рассматривать по отдельности. Понятие энергии позволяет нам связать воедино многие идеи и поэтому не может не быть красивым.

В этом же кроется его привлекательность и полезность. Природа красива. Мы не знаем, почему, но опыт учит нас, что красота влечет за собой полезность. Эффективные теории всегда красивы. Но красивы они не потому, что эффективны, а потому, что наделены внутренней симметрией и экономичны с точки зрения математики. Красота в физике — представление, включающее в себя профессиональную интуицию, и объяснить суть его неспециалисту трудно, так как оно наилучшим образом выражается на языке, не знакомом непосвященному, — на языке математики. Но для того, кто владеет этим языком, красота теории столь же очевидна, как красота поэзии.

Сказанное возвращает меня к тому, с чего я начал. Математика — это язык, язык природы. Не зная языка, вы не можете понять красоту поэзии. Всегда найдутся скептики, которые скажут: “Что это за загадочная математическая красота, о которой вы толкуете? Мы не усматриваем ничего красивого в мешанине символов. Вы, физики, просто занимаетесь самообманом”. Тем, кто так думает, я хотел бы ответить, сравнив математику с музыкой. Невозможно объяснить красоту симфонии тому, кто слышал лишь отдельные музыкальные звуки. Но кто станет отрицать, что в симфонии скрыта подлинная красота, хотя и отвлеченная, не поддающаяся строгому определению? Аналогичным образом обстоит дело и с математической красотой. Как объяснить восхищение, которое вызывают у физика уравнения Максвелла, их неотразимую, исполненную глубокого смысла привлекательность тому, чье знакомство с математикой ограничивается знанием натуральных чисел? И, тем не менее, эстетическое достоинство — качество вполне определенное. Физики, обладающие развитым математическим вкусом, как и их собратья-композиторы, создают более совершенные теории, чем обыватели.

Одна из величайших трагедий нашего общества состоит в том, что в силу страха перед премудростью, плохого преподавания или просто без всяких причин поэзия математики и музыка природы скрыты от большинства людей. Великолепные перспективы, которые открывает математика, недоступны для них. Они могут восхищаться ароматом розы или буйством красок заката, но ощутить всю полноту эстетического переживания им, увы, не дано.

 

Четыре взаимодействия

 

 

Источник всех изменений

 

Едва начав размышлять над окружающим миром, человек осознал, что этот мир изменчив. Он преисполнен активности — движется Солнце, дует ветер, парят птицы, струятся водные потоки. Еще в древности человек заметил, что происходит смена времен года, стареют люди, изнашиваются орудия труда.

Но какая причина вызывает все эти изменения и движение? Одни объекты, такие, как живые существа, содержат источник движения внутри себя, другим, подобным камням, стрелам, топорам, чтобы прийти в движение, требуется внешнее воздействие. Сначала между движением тела в пространстве и изменениями более общего характера не проводилось четкого различия. Точные понятия скорости и ускорения еще не были сформулированы. Наши далекие предки, безусловно, размышляли о силах, сотворивших мир и вызывающих его изменение, но в их представления это были силы магического свойства, не отделимые от веры в богов и злых духов, правящих миром.

Древнегреческие философы предприняли более систематическое изучение процессов изменения и движения, но так и не смогли до конца разобраться в причинах, порождающих то и другое. Аристотель считал, что ключом к пониманию движения служит понятие сопротивления. Он заметил, что в разреженной среде, например в воздухе, тело движется свободнее и, следовательно, быстрее, чем в плотной среде, скажем в воде; в обоих случаях для преодоления сопротивления среды необходима движущая сила. Аристотель отверг идею атомистов о частицах, свободно движущихся в пустоте, ибо пустота, лишенная субстанции, не могла бы оказывать сопротивление движению. Поэтому частицы в пустоте должны были бы двигаться с бесконечной скоростью, что абсурдно.

Современное (техническое) представление о силе полностью сложилось лишь в XVII в. вслед за признанием законов движения Ньютона. Великим достижением Ньютона стало осознание того, что движение как таковое отнюдь не требует приложения силы. Материальное тело будет двигаться с постоянной скоростью в заданном направлении без какого бы то ни было внешнего воздействия. Только отклонение от равномерного прямолинейного движения требует объяснения, т.е. наличия силы. Ньютон устано­вил, что сила вызывает ускорение и вывел точную математическую формулу, связывающую эти величины.

Теория Ньютона позволила объяснить загадку движения Земли вокруг Солнца. Нет никакой видимой причины, вынуждающей Землю двигаться по орбите. В теории Ньютона такая причина и не требуется. Само движение Земли не требует объяснений, в объяснении нуждается только отклонение от равномерного прямолинейного движения. Траектория Земли в пространстве искривляется относительно направления на Солнце, что легко объяснить солнечным притяжением.

Механика Ньютона быстро получила признание, поскольку успешно описывала связь сил и движения, и в наши дни на ней основываются все технические расчеты. Однако механика Ньютона ничего не говорит о происхождении сил, вызывающих ускорение тел. На первый взгляд кажется, что эти силы многочисленны и разнообразны: напор ветра или набегающего потока воды на препятствие, гидростатическое давление воздуха или воды, непрерывное давление расширяющегося металла, мощный выброс взрывающихся химических веществ, тянущее усилие растянутого резинового жгута, мускульная сила человека, вес тяжелых объектов и т.д. Одни силы действуют непосредственно при контакте с телом (усилие, передаваемое телу натянутой веревкой), другие, например, гравитация, действуют на расстоянии, через пустое пространство.

Однако тщательный анализ показывает, что несмотря на столь большое разнообразие, все происходящее в природе можно свести всего к четырем фундаментальным взаимодействиям. Именно эти взаимодействия в конечном счете отвечают за все в мире, именно они являются источником всех изменений. Каждое из четырех фундаментальных взаимодействий имеет свои отличия и в то же время сходство с тремя остальными. Изучение свойств четырех фундаментальных взаимодействий составляет основную задачу физика и важную предварительную ступень на пути к суперсиле.

 

Гравитация

 

Исторически гравитация (тяготение) первым из четырех фундаментальных взаимодействий стала предметом научного исследования. Хотя человек всегда был знаком с гравитацией и основывал на ней сами понятия “вверх” и “вниз”, истинную роль гравитации как силы природы удалось в полной мере осознать только после появления в XVII в. ньютоновской теории гравитации — закона всемирного тяготения. До этого гравитация неразрывно связывалась о Землей и смешивалась с господствовавшим в то или иное время космологическим представлением. Аристотель, считавший, что Земля находится в центре мироздания, усматривал в стремлении тел падать на землю просто пример проявления общего принципа, согласно которому все тела имеют “естественное место” в нашем мире и стремятся занять его. Массивные тела стремятся вниз, тогда как газообразные воспаряют к небесам, т.е. к менее материальной с4)ере. Небесные эфирные элементы обращаются вокруг Земли по строго круговым орбитам, которым соответствует геометрически наиболее совершенное движение.

В средние века, когда закладывались более современные астрономические представления, стало очевидным, что гравитация не ограничена лишь Землей и что гравитационные силы действуют между Солнцем, Луной, планетами и вообще всеми телами в космическом пространстве. Одним из наиболее убедительных подтверждений универсального характера гравитации явилось объяснение Ньютоном океанских приливов действием гравитационного притяжения Луны. Ньютоновский закон обратных квадратов стал воплощением “дальнодействующей” природы гравитации. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В этом нам “повезло”, поскольку гравитация буквально не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, “связывает” звезды в галактики, препятствуя разбеганию звезд в космическом пространстве. В астрономическом масштабе гравитационное взаимодействие, как правило, играет главную роль.

Важная особенность гравитации — ее универсальность. Ничто во Вселенной не избавлено от нее. Каждая частица испытывает на себе действие гравитации, или, как говорят физики, участвует в гравитационном взаимодействии. Гравитация влияет даже на энергию. К тому же каждая частица сама является источником гравитации. Более того, сила гравитационного взаимодействия одинакова у всех частиц — именно это обстоятельство неявно выражено в знаменитом наблюдении (приписываемом Галилею), что все тела независимо от их веса или состава падают одинаково.

Сила гравитации, действующая между частицами, всегда представляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивание, или “антигравитация”, никогда еще не наблюдалось. Причина этого вполне понятна. Гравитационному отталкиванию должна соответствовать отрицательная энергия. Но поскольку энергия, запасенная в любой частице, всегда положительна и наделяет ее положительной массой, частицы под действием гравитации всегда стремятся сблизиться. Отрицательная энергия в этом смысле есть нечто непонятное. Но хотя частицы не могут обладать отрицательной энергией, энергия поля может быть отрицательной; это приводит к глубоким последствиям, которые мы рассмотрим в дальнейшем.

Возможно, наиболее удивительной особенностью гравитации является ее малая интенсивность. Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то низшая (самая близкая к ядру) орбита электрона по размерам превосходила бы доступную наблюдению часть Вселенной! В мире субатомных частиц гравитация настолько слаба, что физики склонны полностью пренебрегать ею. Она не проявлялась ни в одном из наблюдавшихся до сих пор процессов с участием частиц.

Гравитационное взаимодействие макроскопических объектов также остается для нас незаметным. Когда мы идет по улице, огромные здания притягивают нас слабыми гравитационными “щупальцами”, но это притяжение слишком слабо, чтобы его ощутить. Однако высокочувствительные устройства в состоянии уловить гравитационные эффекты. Еще в 1774г. шотландец Невил Маскелин обнаружил незначительное отклонение отвеса от вертикали, вызванное гравитационным притяжением расположенной поблизости горы. В 1797г. Генри Кавендиш поставил знаменитый эксперимент, тщательно измерив едва уловимую силу притяжения между двумя шариками, прикрепленными на концах горизонтально подвешенного деревянного стержня, и двумя большими свинцовыми шарами. Это было первое лабораторное наблюдение гравитационного притяжения между двумя телами.

Может показаться удивительным, что мы вообще ощущаем гравитацию, коль скоро она так слаба. Как она может оказаться основной силой во Вселенной? Ответ кроется в универсальности гравитации. Поскольку каждая частица вещества вызывает гравитационное притяжение, гравитация возрастает по мере образования все больших скоплений вещества. Мы ощущаем гравитацию в повседневной жизни потому, что все атомы Земли сообща притягивают нас. Действие гравитационного притяжения одного электрона или протона пренебрежимо мало, но результирующая сила притяжения со стороны всех электронов или протонов может быть значительной. Если бы антигравитирующих частиц было столько же, сколько гравитирующих, то одни частицы нейтрализовали бы другие и сила гравитации, хотя и существовала бы, не была бы заметной, поскольку оказалась бы слишком слабой.

Гравитацию следует рассматривать как поле. Каждая частица является источником гравитационного поля, окружающего ее невидимым ореолом. Другая частица, находящаяся в этом гравитационном поле, испытывает на себе действие силы. Поле—это не просто способ описания гравитации. Как уже упоминалось в гл. 2, в поле могут существовать волнообразные возмущения. Подобно тому как Максвелл обнаружил, что в электромагнитном поле могут возникать волны, распространяющиеся в пространстве, Эйнштейн установил, что волны могут зарождаться и в гравитационном поле.

Ньютоновская теория гравитации, остававшаяся незыблемой на протяжении более 200 лет, была повержена новой физикой, возникшей в первые десятилетия XX в. Долгое время не удавалось объяснить расхождение между предсказаниями теории Ньютона и результатами наблюдений орбиты планеты Меркурий, которая имеет не вполне эллиптическую форму. Небольшое вращение — прецессия — орбиты обусловлено гравитационным возмущением, вызванным воздействием других планет, но и после учета этих возмущений сохранялось небольшое расхождение — всего 43 угловые секунды в столетие, — которое не могла объяснить теория Ньютона.

Более серьезные затруднения возникли, когда теория Ньютона столкнулась с теорией относительности. Согласно Ньютону, гравитационное взаимодействие между двумя телами передается через пространство мгновенно, так что, если бы Солнце вдруг исчезло, траектория Земли тотчас же перестала бы искривляться, хотя мы продолжали бы видеть Солнце еще в течение 8 мин после его исчезновения — за это время солнечный свет достигает Земли. Согласно теории относительности Эйнштейна невозможно распространение физического сигнала со скоростью выше скорости света, и таким образом она вступает в противоречие с теорией гравитации Ньютона.

Пытаясь расширять свою теорию так, чтобы включить в нее гравитацию, Эйнштейн создал (1915) общую теорию относительности, которая не только вытеснила закон всемирного тяготения Ньютона, но и в корне изменила сами “идейные” основы нашего понимания гравитации. В теории Эйнштейна гравитация — это не сила, а проявление искривления пространства-времени. Тела вынуждены следовать по искривленным траекториям вовсе не потому, что на них действует гравитация, — просто они движутся кратчайшим, самым “быстрым”, путем в искривленном пространстве-времени. По Эйнштейну гравитация обусловлена просто геометрией.

Теория Ньютона вполне применима во всех практических приложениях, в частности в авиации и космонавтике, она вполне адекватно описывает и большинство астрономических систем.

Однако она непригодна в тех случаях, когда гравитационные поля достигают большой силы, как вблизи коллапсирующих объектов типа нейтронных звезд или черных дыр. Влияние искривления пространства-времени можно обнаружить даже в умеренных гравитационных полях. Например, прецессия орбиты Меркурия обусловлена искривлением пространства, вызванного гравитационным воздействием Солнца. Кроме того, как упоминалось в гл. 2, очень чувствительные часы могут обнаружить замедление времени на поверхности Земли.

 

Электромагнетизм

 

Хотя гравитация первой получила надлежащее научное объяснение, электромагнетизм в равной мере известен людям с незапамятных времен. Электрические силы зримо проявляются при вспышках молний, мы можем видеть, как они “работают” при коронном разряде и других атмосферных явлениях, сопровождающихся свечением. Магнитными силами обусловлена сложная игра света и красок в полярных сияниях.

Считается, что существование электричества впервые установил древнегреческий философ Фалес Милетский. Он заметил, что, если кусок янтаря потереть о шелк или мех, янтарь обретает способность притягивать мелкие предметы. Янтарь по-гречески называется электрон. В средние века открытое Фалесом странное явление тщательно изучал придворный медик английской королевы Елизаветы I Уильям Гильберт, который обнаружил, что способность электризоваться присуща и многим другим веществам. Дальнейшие исследования, проведенные в Англии и других странах Европы, показали, что некоторые вещества ведут себя как изоляторы. Французский ученый Шарль Дюфе установил, что существуют две разновидности электрических зарядов; теперь мы называем их положительными и отрицательными.

В XVIII—XIX вв. природа электричества частично прояснилась после экспериментов Бенджамина Франклина и Майкла Фарадея. Выяснилось, что электрические заряды одного знака отталкиваются, а заряды противоположных знаков притягиваются, и в том и другом случае электрические силы ослабевают с расстоянием в соответствии с законом “обратных квадратов”, который Ньютон вывел ранее для гравитации. Но по величине электрические силы намного превосходят гравитационные. В отличие от слабого гравитационного взаимодействия, наличие которого Кавендишу удалось продемонстрировать только с помощью специального прибора, электрические силы, действующие между телами обычных размеров, можно легко наблюдать.

Работы Фарадея навели на мысль, что электричество скрыто в атоме, но существование электрона было твердо установлено только после того, как Дж. Дж. Томсон открыл “катодные лучи” в 90-е годы прошлого столетия. Ныне известно, что электрический заряд любой частицы вещества всегда кратен фундаментальной единице заряда — своего рода “атому” заряда. Почему это так — чрезвычайно интересный вопрос. Однако не все материальные частицы являются носителями электрического заряда. Например, фотон и нейтрино электрически нейтральны. В этом отношении электричество отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы.

Как и электричество, магнетизм в природе обнаружили древние греки. Примерно к 600г. до н.э. им были известны свойства магнитного железняка (оксида железа); как обнаружилось, его куски могут действовать друг на друга на расстоянии. Примерно через 500 лет китайцы открыли поразительную способность магнитного железняка определенным образом ориентироваться в пространстве и создали первый примитивный компас. Правда, по' началу его использование ограничивалось мистическими действами, и лишь через несколько столетий компас стал навигационным прибором.

К концу XVI в. европейские ученые начали постигать истинную природу магнетизма. Гильберт доказал, что Земля ведет себя как большой магнит, свойства которого весьма напоминают свойства построенной им модели — шара из магнитного железняка. Было установлено, что существуют две разновидности магнетизма, которые в соответствии с магнетизмом Земли получили название северного и южного полюсов. Как и электрические заряды, одноименные магнитные полюса отталкиваются, а разноименные — притягиваются. Однако в отличие от электрических зарядов магнитные полюса встречаются не по отдельности, а только парами — северный полюс и южный полюс. В обычном магните, имеющем форму стержня (прямоугольного параллелепипеда), один конец действует как северный полюс, а другой — как южный. Если стержень разрезать пополам, то на месте разреза возникнут новые полюса, т.е. получатся два новых магнита, каждый из которых имеет и северный, и южный полюса. Все попытки получить таким способом изолированный магнитный полюс — монополь — заканчивались неудачей. Может быть, существование в природе изолированных магнитных полюсов исключено? Если это так, то почему? Как мы увидим в дальнейшем, исследование суперсилы дает ответы на эти интереснейшие вопросы.

Как электрическое и гравитационное взаимодействия, взаимодействие магнитных полюсов подчиняется закону обратных квадратов. Следовательно, электрическая и магнитная силы “дальне-действующие”, и их действие ощутимо на больших расстояниях от источника. Например, магнитное поле Земли простирается далеко в космическое пространство. Солнце также порождает магнитное поле, которое заполняет всю Солнечную систему. Существует даже галактическое магнитное поле.

В начале XIX в. выяснилось, что между электричеством и магнетизмом существует глубокая связь. Датский физик Ханс Кристиан Эрстед открыл, что электрический ток создает вокруг себя магнитное поле, тогда как Майкл Фарадей показал, что переменное магнитное поле индуцирует в проводнике электрический ток. Эти открытия легли в основу динамомашины и электрогенератора, играющих ныне столь важную роль в технике.

Как уже упоминалось в гл. 4, решающий шаг в познании электромагнетизма сделал в 50-х годах XIXв. Максвелл, объединивший электричество и магнетизм в единой теории электромагнетизма — первой единой теории поля. С соответствующими уточнениями для учета квантовых эффектов теория Максвелла с успехом продержалась вплоть до 1967г., когда в объединении взаимодействий был сделан следующий крупный шаг.

 

Слабое взаимодействие

 

Человечество познакомилось со слабым взаимодействием, так и не осознав этого события, еще в 1054 г., когда китайские астрономы отметили появление яркой голубой звезды в той области неба, где раньше не наблюдалось ничего. Соперничая в блеске даже с планетами, звезда ярко светила на протяжении нескольких недель, а затем стала медленно угасать. Современные астрономы считают вспышку 1054 г. взрывом сверхновой — гигантским по силе взрывом старой звезды, вызванным внезапным коллапсом ее ядра, который сопровождается кратковременным испусканием огромного количества нейтрино. Обладающие только слабым взаимодействием, эти нейтрино тем не менее разметали наружные слои звезды в космическом пространстве, образовав клочья облаков расширяющегося газа. Ныне сверхновая 1054 г. наблюдается в виде туманного светлого пятнышка в созвездии Тельца.

Сверхновые — один из немногих случаев зримого проявления слабого взаимодействия. Это взаимодействие действительно очень слабое, оно значительно уступает по величине всем взаимодействиям, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий.

К мысли о существовании слабого взаимодействия ученые продвигались медленно. Все началось в 1896 г., когда Анри Беккерель, исследуя загадочное почернение фотографической пластинки, оставшейся в ящике письменного стола радом с кристаллами сульфата урана, случайно открыл радиоактивность. Систематическое исследование радиоактивного излучения было предпринято Эрнестом Резерфордом; он установил, что радиоактивные атомы испускают частицы двух различных типов, которые назвал альфа и бета. Тяжелые положительно заряженные альфа-частицы, как выяснилось, представляли собой быстро движущиеся ядра гелия. Бета-частицы оказались летящими с большой скоростью электронами.

В деталях явление бета-радиоактивности оставалось не до конца понятным вплоть до 30-х годов. Бета-распад обладал в высшей степени странной особенностью. На первый взгляд казалось, что в этом распаде нарушается один из фундаментальных законов физики — закон сохранения энергии. Часть энергии куда-то исчезала. Вольфганг Паули “спас” закон сохранения энергии, предположив, что вместе с электроном при бета-распаде вылетает еще одна частица, нейтральная и обладающая необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Она-то и уносит с собой недостающую энергию. Энрико Ферми назвал частицу-невидимку “нейтрино”, что означает “маленькая нейтральная частица”. Нейтрино оказались настолько неуловимыми, что достоверно обнаружить их удалось лишь в 50-х годах.


Поделиться:



Популярное:

  1. А вы знаете свою целевую аудиторию?
  2. Бог не может излить Свою славу на неочищенный народ
  3. Глава 4. Личность и индивидуальность (Психический склад личности)
  4. И как часто я должен дрессировать свою собаку?»
  5. И познал Каин жену свою; и она зачала и родила Еноха. И построил он город; и назвал город по имени сына своего: Енох. (Быт. 4:17).
  6. Интегральная индивидуальность и ее
  7. Интуиция – это умение слышать себя, свою душу. Чистота тела, мыслей и чувств помогает раскрытию этой связи.
  8. Использование других, чтобы остановить свою боль. 10 апреля.
  9. Каждый день выражайте другим свою благодарность
  10. Кто из ниже приведенных социологов начинал свою карьеру как журналист?
  11. Лишь поднявшись в заоблачные высоты своего светлого Духа, лишь уйдя в свою собственную Сущность, откинув всякую форму, человек доходит до постижения истинной Жизни и ее законов.
  12. Моя дочь постоянно невменяема, покушается на свою жизнь и здоровье близких. У нас нет сил противостоять этому. Мы имеем право сдать ее в психиатрическую больницу?


Последнее изменение этой страницы: 2016-04-10; Просмотров: 599; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.047 с.)
Главная | Случайная страница | Обратная связь