Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Особенности строения генетического аппарата и способы передачи наследственной информации у бактерий и вирусов. Генная инженерия и ее основные достижения. ⇐ ПредыдущаяСтр 3 из 3
В состав нуклеотида бактерий входят ДНК, РНК и белки. Число нуклеотидов в бактериальной клетке может варьировать от одного (в культурах, находящихся в стационарной фазе роста) до двух (в стадии задержки размножения после переноса клеток в свежую среду) и четырех (в культурах с постоянной скоростью роста). Каждый нуклеоид содержит двухцепочечную замкнутую в кольцо молекулу ДНК. В молекуле ДНК нуклеотида закодирована вся генетическая информация, необходимая для жизнедеятельности клетки, поэтому нуклеотид рассматривают как бактериальную хромосому. Хромосомы имеют кольцевое строение. Гигантская молекула ДНК бактериальной хромосомы поддерживается связанными с ней молекулами РНК и белка в форме компактной структуры, свернутой в отдельные сверхспирализованные петли (домены), число которых колеблется от 12 до 80. Помимо хромосомной ДНК в состав генома многих прокариот входят также сверхскрученные, ковалентно-замкнутые кольцевые молекулы внехромосомной, или плазмидной, ДНК. Способы передачи наследственной информации у бактерий: 1. трансформация – перенос изолированных фрагментов мол-лы ДНК из одного орг-ма к другому. 2. трансдукция это способность переносить наследственную инф-ю от одного орг-ма к др. при помощи вирусов. 3. конъюгация – обмен наследственной информацией. Вирусы , представляют собой частицы (вирионы), стоящие на грани между живой и неживой природой и обладающие инфекционными свойствами. В дословном переводе термин «вирус» обозначает яд, ядовитое вещество. Генетический материал вируса представлен одной молекулой нуклеиновой кислоты, ДНК или РНК, не связанной с белком. В связи с этим вирусы подразделяются на ДНК- и РНК-содержащие. Вирусы бактерий чаще содержат ДНК, а почти все вирусы растений и подавляющее большинство вирусов человека — РНК. Нуклеиновая кислота вируса бывает одно- или двухцепочечной и может иметь кольцевую или линейную форму. Кольцевая форма ДНК более стабильна и свойственна большинству вирусов. Кольцо ДНК (РНК) обычно бывает перекручено, поэтому она имеет суперспирализованный вид. В нуклеиновой кислоте вируса закодирована информация о всех его структурных белках. Многие вирусы содержат гены специфических полимераз (репликаз) — ферментов, контролирующих репликацию молекул нуклеиновых кислот. Но чаще вирусы используют для репликации ферменты клетки-хозяина. Некоторые мелкие вирусы содержат только три гена. Гены вирусов могут существовать в виде фрагментов ДНК, разделенных генетически инертными нуклеотидными последовательностями. Эти последовательности в момент работы генов «вырезаются», и целостность генетической информации восстанавливается. Генетическое вещество у вирусов заключено в белковую оболочку, которая вместе с нуклеиновой кислотой образует так называемый капсид или нуклеокапсид. Большинство вирусов растений и РНК-содержащих бактериальных фагов состоит только из нуклеиновой кислоты и белка. Генная инженерия – это комплекс действий, направленных на реорганизацию (перестройку) наследственного материала. Целью ГИ явл-ся создание новых гибридных форм эукариот и прокариот не половым путем, а методом гибридизации мол-лы ДНК (перенос ген-ой инф-ции из 1 орг-ма в др.). Включает следующие этапы: 1. получение ген-го материала. 2. включение этого материала в автономно реплицирующуюся генетт-ю стр-ру и создание рекомбинантной ДНК. 3. введение рекомбинантной мол-лы ДНК в кл.-реципиент и вкл. ее в хромосомный аппарат. 4. отбор трансформированных кл. в геном кот. вкл. переносимый ген. Способы получения генов для пересадки 1. синтезирование хим-м путем. 2. метод ферментативного синтеза. 3. с помощью фер-тов рестриктаз. 4. клонирование (размножение кл. с рекомб-ной ДНК). Основные достижения ГИ. На основе генной инженерии можно наладить промышленное производство витаминов, аминокислот, ферментов, гормонов и т. д. В настоящее время уже освоено промышленное производство белка инсулина (гормона поджелудочной железы для лечения диабета) и интерферонов — белков, подавляющих размножение вирусов. Генная инженерия используется в медицинской практике получения вакцин и сывороток. Генная инженерия позволяет конструировать и эукариотические клетки с новой генетической программой. В настоящее время получают гибриды соматических клеток разных видов и даже животных и растений. Созданы растения, способные усваивать атмосферный азот, что в будущем не только обогатит растительную пищу белками, но сделает ненужным применение азотсодержащих удобрений и благоприятно скажется на чистоте окружающей среды. Успехи генной инженерии позволили решить ряд фундаментальных проблем биологии. Так, с ее помощью были обнаружены мозаичное, экзонинтронное, строение гена у эукариот, структурные особенности и механизмы активности генов имуноглобулинов, выделены гены, ответственные за развитие злокачественных опухолей, расшифрована их полная нуклеотидная последовательность, выяснены некоторые механизмы дифференциальной активности генов в онтогенезе.
СЕЛЕКЦИЯ КАК НАУКА И ТЕХНОЛОГИЯ. ИСХОДНЫЙ МАТЕРИАЛ В СЕЛЕКЦИИ. СИСТЕМЫ СКРЕЩИВАНИЯ И МЕТОДЫ ОТБОРА В СЕЛЕКЦИЮ, ИХ ХАРАКТЕРИСТИКА. ИСПОЛЬЗОВАНИЕ В СЕЛЕКЦИИ ДОСТИЖЕНИЙ ГЕНЕТИКИ. Селекция – это наука и методах создания новых и улучшения существующих штампов микроорганизмов, сортов растений и пород животных. Исходный материал: Породой, сортом, штаммом называют популяцию организмов, искусственно созданную человеком и характеризующуюся определенными наследственными особенностями. Все особи внутри породы, сорта, штамма имеют сходные наследственно закрепленные св-ва: продуктивность, определенный комплекс физиологических и морфологических св-в, а также однотипичную реакцию на факторы внешней среды. Наличие наследственной изменчивости позволяет путем различных систем скрещивания сочетать определенные наследственные признаки в одном организме, а также избавляться от нежелательных св-в. Система скрещивания Методы скрещивания 1. родственное (самоопыление) (разведения): 2. Неродственное: - внутрипородное - межпородное (межсортовое) - отдаленная гибридизация Родственным скрещиванием (инбридинг) называют скрещивание особей, имеющих близкую степень родства: брат-сестра, отец-дочь Неродственное скрещивание- аутбридинг. Служит важным методом селекции. С его помощью комбинируют различные ценные признаки для создания новой породы или сорта. Пример: чтобы повысить живой вес кур породы с маленьким весом, их можно скрестить с другой породой, характеризующейся большим живым весом. Гибридные куры первого поколения по весу будут занимать промежуточное положение. Но если их скрестить с такими же гибридными петухами, то во F2 произойдет расщепление на различные по весу особи. Породы еще не будет, но в этом поколении могут встретиться нужные сочетания признаков. Отдаленная гибридизация – скрещивание форм, относящихся к разным видам и родам. В селекции получила наибольшее значение у растений, и прежде всего вегетативно-размножаемых. Ее широко использовали многие селекционеры для выведения сортов плодовых и ягодных растений, совмещающих в себе ряд таких ценных качеств, как морозостойкость, устойчивость к заболеваниям. Вегетативное размножение отдаленного гибрида снимает проблему стерильности. Так скрещивание диких иммунных к вирусным заболеваниям видов сахарного тростника с культурными формами позволило в 3 раза повысить продукцию сахара. У животных: скрестили тонкорунных грубошерстных овец с диким бараном – Архаром была создана тонкорунная порода. Архаро – мерино, приспособленное к высокогорным пастбищным условиям. В селекциях микроорганизмов гибрид двух дрожжей: Saccharomyces cerevisiae и S. Carlsbergensis сочетает ферменты, гидролизирующие сахара обоих видов. В силу этого он дает повышенный выход спирта и патоки. Этот гибридный штамм может неограниченно долго размножаться вегетативно не давая расщепления. Основные задачи современной селекции: - повышение урожайности сортов культурных растений - повышение продуктивности пород домашних животных - повышение продуктивности штаммов микроорганизмов С целью изучения многообразия и географического распространения культурных растений Н.И Вавилов организовывал многочисленные экспедиции. В результате выделены центры происхождения культурных растений: 1)Южноазиатский – рис, сахарный тростник, цитрусовые. 2)Восточноазиатский - соя, просо, гречиха. 3)Юго-западноазиатский - пшеница
Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 2645; Нарушение авторского права страницы