Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Единственность разложения на простые сомножители
20. Всякое целое а или взаимно просто с данным простым р, или же делится на р. Действительно, (а, р), будучи делителем р, может быть равно или 1, или р. В первом случае а взаимно просто с р, во втором а делится на р. 21. Если произведение нескольких сомножителей делится на данное простое р, то, по крайней мере, один из сомножителей делится на р. Действительно (а), каждый сомножитель или взаимно прост с р, или же делится на р. Если бы все сомножители были взаимно просты с р, то и их произведение (3, f, § 2) было бы взаимно просто с р. Поэтому хотя бы один сомножитель делится на р. 22. Всякое целое, большее единицы, разлагается на произведение простых сомножителей и притом единственным способом (если отвлечься от порядка следования сомножителей). Действительно, пусть а – целое, большее 1; обозначая буквою его наименьший простой делитель, имеем . Если , то, обозначая буквою р2 его наименьший простой делитель, имеем . Если , то подобно этому находим и т.д., пока не придем к какому-либо , равному 1. Тогда получим . Перемножив все найденные равенства и произведя сокращение, получим следующее разложение а на простые сомножители: . Допустим, что для того же самого а существует и второе разложение на простые сомножители , тогда найдем . Правая часть этого равенства делится на . Следовательно (b), по крайней мере один из сомножителей левой части должен делиться на . Пусть, например, . делится на . (порядок следования сомножителей в нашем распоряжении); тогда найдем ( кроме 1 делится только на ). Сократив обе части равенства на , получим Повторив прежние рассуждения применительно к этому равенству, получим и т.д., пока, наконец, в одной части равенства, например, в левой не сократятся все сомножители. Но одновременно должны сократиться и все сомножители правой части, так как равенство при превосходящих 1, невозможно. Таким образом, второе разложение на простые сомножители тождественно первому. 23.В разложении числа а на простые сомножители некоторые из них могут повторяться. Обозначая буквами различные из них и буквами кратности их вхождения в а, получим так называемое каноническое разложение числа а на сомножители Пример. Каноническое разложение числа 588 000 будет: . 24.Пусть – каноническое разложение числа а. Тогда все делители числа суть – все числа вида (1) Действительно, пусть d делит а. Тогда (b, § 1) а = dq и, следовательно, все простые делители числа d входят в каноническое разложение числа а с показателями, не меньшими тех, с которыми они входят в каноническое разложение числа d. Поэтому d имеет вид (1). Обратно, всякое d вида (1) делит а. Пример. Все делители числа получим, если в выражении заставим независимо друг от друга пробегать значения Поэтому указанные делители будут: 1, 2, 4, 8, 16, 3, 6, 12, 24, 48, 9, 18, 36, 72, 144, 5, 10, 20, 40, 80, 15, 30, 60, 120, 240, 45, 90, 180, 360, 720.
25. Общий наибольший делитель нескольких чисел является произведением степеней вида , где р – общий простой делитель всех этих чисел, а – наименьший из показателей, с которыми р входит в их канонические разложения. 26. Совокупность общих делителей нескольких чисел совпадает с совокупностью делителей их общего наибольшего делителя. Действительно, пусть d – общий делитель чисел а,..., l. Тогда имеют место равенства вида (которые показывают, что: а) всякий простой делитель р числа d должен быть делителем и каждого из чисел a, ..., l, а также что: b) этот делитель р должен входить в каноническое разложение числа d с показателем, не превосходящим наименьшего из тех, с которыми он входит в канонические разложения чисел а, ..., l; обратно, каждое d, подчиненное условиям а) и b), очевидно, является общим делителем чисел а, ..., l. Общим наибольшим делителем, т.е. наибольшим из общих делителей (а, § 2), является тот из последних, в каноническом разложении которого показатели степеней простых чисел точно равны наименьшим из тех, с какими эти простые числа входят в канонические разложения чисел а, ..., l. А всякий общий делитель, как имеющий в своем каноническом разложении все показатели не превосходящими соответствующих показателей в каноническом разложении общего наибольшего делителя, будет делителем последнего. Пример. Общий наибольший делитель чисел равен . 27. Общее наименьшее кратное нескольких чисел является произведением степеней вида , где р – простой делитель по меньшей мере одного из этих чисел, а – наибольший из показателей, с которыми р входит в их канонические разложения. 28. Общее наименьшее кратное нескольких попарно простых чисел равно их произведению. 29. Совокупность общих кратных нескольких чисел совпадает с совокупностью кратных их общего наименьшего кратного. Действительно, пусть М – общее кратное чисел о, ..., l. Тогда имеют место равенства вида M = ad', ..., М = ll’, которые показывают, что: а) всякий простой делитель р каждого из чисел Пример. Общее наименьшее кратное чисел 1800 = 23. 32. 52, 3780 = 22. 33. 5 . 7, 8910 = равно 23. З4. 52. 7 . 11 = Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 1552; Нарушение авторского права страницы