Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Примесная проводимость полупроводников
Примесная проводимость обусловлена несовершенством кристаллической структуры полупроводника. Дефекты в кристаллической решетке вызывают образование дополнительных энергетических уровней внутри запретной зоны (рис. 3, б, рис. 4, б). Благодаря этому для перехода электрона с дополнительного уровня в зону проводимости или из валентной зоны на дополнительный уровень требуется энергия, меньше ширины запретной зоны W. В случае перехода электрона с дополнительного энергетического уровня в зону проводимости появляется дополнительный электрон проводимости. При переходе электрона с валентной зоны на дополнительный энергетический уровень образуется дополнительная дырка проводимости. 1) Электропроводимость полупроводников n-типа Если в кристаллической решетке кремния находится атом примеси, который представляет собой элемент V группы Периодической системы химических элементов Д. И. Менделеева, например фосфор (рис. 2.а), то четыре из пяти валентных электронов фосфора будут участвовать в формировании ковалентных связей с соседними атомами основного элемента кремния. Пятый валентный электрон фосфора связан только со своим атомом, и прочность этой связи много меньше прочности ковалентной связи. Для перехода этого электрона на дополнительный энергетический уровень (рис. 2, б) требуется энергия, много меньше энергии ширины запретной зоны W. Оторвавшийся от атома фосфора пятый электрон превращается в электрон проводимости. На месте оторвавшегося электрона образуется дырка. Она остается неподвижной, дырочная проводимость в таком полупроводнике отсутствует и его проводимость носит электронный характер. Полупроводники с преобладанием электронной электропроводности называют электронными или n-типа. Рис. 3. Полупроводник n-типа: а – модель кристаллической решетки; б - зонная диаграмма
2) Электропроводимость полупроводников р-типа Если в кристаллической решетке кремния находится атом примеси, который представляет собой элемент III группы таблицы Д. И. Менделеева, например бора, то все три валентных электрона бора участвуют в образовании ковалентных связей с кремнием, одна связь кремния остается незаполненной. Эту связь можно заполнить электроном соседнего атома кремния, образовав четвертую ковалентную связь с примесным атомом бора (рис.3, а). Для этого электрон должен получить энергию, значительно меньшую, чем энергия запретной зоны (рис.3, б).
Рис. 4. Полупроводник р-типа: а – модель кристаллической решетки; б - зонная диаграмма
Приняв дополнительный электрон, атом бора ионизируется и становится отрицательным ионом. При этом одна из четырех связей соседнего атома кремния остается незавершенной, т.е. образуется дырка. В результате тепловых колебаний решетки эта незавершенная связь может быть заполнена электроном соседнего атома, образуя новую дырку. Таким образом, в результате исчезновения одних дырок и образования новых происходит хаотичное движение дырок в пределах кристалла, которые являются носителями заряда. Поэтому электропроводность полупроводника носит дырочный характер. Полупроводники с преобладанием дырочной электропроводности называют дырочными или р-типа.
Введение примесей в полупроводник приводит к появлению примесной электропроводности, возникающей в результате ионизации атомов примесей. В отличие от собственной примесная электропроводность образуется благодаря наличию носителей заряда только одного знака (электронов в полупроводниках n-типа и дырок в полупроводниках p-типа). Возможность управлять значением и типом электропроводности полупроводников в результате введения примесей лежит в основе создания всех полупроводниковых приборов. ПРОСТЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ
Германий В земной коре содержание германия невелико и составляет примерно 0, 001%. Германий почти не имеет своих руд. Единственная руда германид содержит меди, железа и цинка гораздо больше, чем германия. В ничтожных количествах (0, 01...0, 5%) германий содержится в цинковых рудах, угольной пыли, золе, саже и морской воде. Он рассеян в силикатах, сульфидных минералах, а также в минералах, представляющих собой сульфасоли. Большое количество германия (до 100 г/т) содержат бурые сорта угля. Получают германий в результате сложного технологического процесса из продуктов сгорания бурого угля. Окончательным продуктом этого процесса является монокристаллический германий в виде слитков. Кристаллический германий – твердый, хрупкий материал с характерным металлическим блеском. Кристаллизуется в виде кубической решетки типа алмаза. Ширина запретной зоны при комнатной температуре =0.75эВ, при температуре 300К =0.67эВ. Рабочая температура полупроводниковых приборов на основе германия не превышает 80°С. Концентрация собственных носителей заряда ni=2.5× 1019 м-3. Собственное удельное электрическое сопротивление =0.68Ом× м. Электропроводимость германия зависит от температуры. При низких температурах (Т< 5.4К) и высоких давлениях (Р> 11ГПа) германий переходит в сверхпроводящее состояние. При плавлении удельная проводимость германия возрастает скачком примерно в 13 раз. При дальнейшем нагреве удельная проводимость сначала почти не изменяется, а начиная с температуры 1100°С - падает. В момент плавления германия происходит увеличение его плотности на 5 - 6%. Для производства полупроводниковых приборов используют германий электронного и дырочного типов с определенным удельным электрическим сопротивлением. Тип проводимости и удельное электрическое сопротивление германия определяется количеством введенных в исходный материал примесей. Монокристаллический германий различных марок, легированный сурьмой, мышьяком, галлием и золотом, обладает удельным электрическим сопротивлением от 0, 0004 до 45 Ом× м. Легирующие примеси вводят в определенных количествах в рабочий объем расплавленного поликристаллического германия перед выращиванием монокристаллов. Германий легируют нейтральными, донорными, акцепторными и создающими глубокие энергетические уровни примесями. Нейтральные примеси не меняют тип электропроводности полупроводникового материала и количество носителей заряда в нем. К нейтральным примесям германия относят инертные газы, азот и аргон и элементы IV группы Периодической системы химических элементов Д. И. Менделеева: кремний, свинец, олово. Основными акцепторными примесями в германии являются элементы III группы Периодической системы химических элементов Д. И. Менделеева: галлий, индий, алюминий. Донорные уровни в германии создают элементы V группы Периодической системы химических элементов Д.И.Менделеева: мышьяк, сурьма, висмут, фосфор, а также элемент I группы - литий. Глубокие энергетические уровни в запретной зоне германия образуют многие элементы I, II, VI, VII и VIII групп Периодической системы химических элементов Д.И. Менделеева. Однако растворимость этих элементов, как правило, значительно меньше растворимости акцепторов и доноров. Германий применяется для изготовления выпрямителей переменного тока различной мощности, транзисторов разных типов. Из него изготовляются преобразователи Холла и другие, применяемые для измерения напряженности магнитного поля, токов и мощности, умножения двух величин в приборах вычислительной техники и т.д. Оптические свойства германия позволяют использовать его для фототранзисторов и фоторезисторов, оптических линз с большой светосилой (для инфракрасных лучей), оптических фильтров. Рабочий диапазон температур германиевых приборов от -60 до +70 °С, при повышении температуры до верхнего предела прямой ток, например у диодов, увеличивается почти в два раза, а обратный - в три раза. При охлаждении до - (50 - 60)°С прямой ток падает на 70 - 75%. Германиевые приборы должны быть защищены от действия влажности воздуха. Использование монокристаллических слитков германия в технологии изготовления полупроводниковых приборов и интегральных микросхем связано с большими потерями материала при механической обработке (резке слитков на пластины, шлифовке и полировке пластин). Поэтому широко применяют эпитаксиальные пленки германия, которые получают осаждением монокристалического германия в виде монокристаллических пленок на подложки из различных материалов (германий, кремний, кварц, сапфир). Кремний Кремний является элементом IV группы Периодической системы химических элементов Д.И.Менделеева. После кислорода это самый распространенный элемент в земной коре. Он составляет примерно 1/4 массы земной коры. Однако в свободном состоянии в природе он не встречается. Его соединениями являются такие распространенные природные материалы, как кремнезем и силикаты. Песок и глина, образующие минеральную часть почвы, также представляют собой соединения кремния. Из соединении кремний получают несколькими способами. Чаще всего используют метод восстановления четыреххлористого кремния SiCl4 парами цинка или водорода. В технологическом отношении кремний более сложный материал, чем германий, так как он имеет высокую температуру плавления 1414°С и в расплавленном состоянии химически активен (вступает в реакцию со всеми материалами, из которых изготавливают тигли). Кристаллический кремний - темно-серое твердое и хрупкое вещество с металлическим блеском, химически довольно инертное. Основной параметр полупроводниковых приборов - ширина запретной зоны при температуре 20°С W=1, 12 эВ. Это позволяет создавать кремниевые полупроводниковые приборы с относительно высокой рабочей температурой (до 125°С). Верхний температурный предел работы кремниевых приборов достигает 200 °С. Концентрация собственных носителей зарядов при комнатной температуре ni= 3× 1016м-3. Удельное электрическое сопротивление кремния с собственной электропроводностью = 2, 3× 103Ом-м, резко уменьшается при увеличении концентрации примесей. При низких температурах (Т< 6, 7 К) и высоких давлениях (Р> 12 ГПа) кремний переходит в сверхпроводящее состояние, т.е. удельное электрическое сопротивление кремния уменьшается до нуля. При использовании монокристаллического кремния в полупроводниковом производстве имеют место большие потери этого материала. Это связано с тем, что большинство полупроводниковых приборов основано на процессах, происходящих в очень узких граничных или поверхностных слоях полупроводника. Остальной объем монокристалла является паразитной частью и чаще всего ухудшает параметры прибора. Большая часть материала теряется при механической обработке слитков (резке на пластины, шлифовке, полировке и т.д.). С целью уменьшения этих потерь в полупроводниковом производстве применяют кремний в виде монокристаллических тонких слоев, которые осаждают на объемные монокристаллы, которые называют подложками. Такие монокристаллические слои, сохраняющие кристаллографическую ориентацию подложки, называют эпитаксиалъными. В качестве подложек используют монокристаллы кремния, сапфира, корунд и др. В зависимости от характера влияния на тип электропроводности примеси делят на нейтральные, донорные, акцепторные и создающие в запретной зоне кремния глубокие энергетические уровни. К нейтральным примесям кремния относят водород, азот, инертные газы, а также элементы IV группы Периодической системы химических элементов Д.И.Менделеева (германий, олово, свинец). Основными донорными примесями являются элементы V группы Периодической системы химических элементов Д.И.Менделеева (фосфор, мышьяк, сурьма, висмут). В качестве акцепторной примеси для кремния в основном используют элементы III группы Периодической системы химических элементов Д.И.Менделеева (бор, алюминий). Элементы I, II, VI, VII гpyпп создают в запретной зоне кремния глубокие энергетические уровни и могут быть донорами и акцепторами. В качестве таких примесей чаще всего применяют золото и цинк. При легировании золотом в кремнии образуются дополнительные центры рекомбинации носителей заряда, что уменьшает время жизни неравновесных носителей заряда. Легирование кремния производят в процессе получения объемных монокристаллов и эпитаксиальных пленок.
Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 622; Нарушение авторского права страницы