Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
КЛАССИФИКАЦИЯ КАРБОНАТНЫХ КОЛЛЕКТОРОВ
Карбонатные породы как коллекторы нефти и газа уверенно конкурируют с терригенными образованиями. По различным данным, от 50 до 60% современных мировых запасов углеводородов приурочено к карбонатным образованиям. Среди них выделяются наилучшие по качеству коллекторы - карбонатные породы рифовых сооружений. Добыча нефти и газа, большая по объему, производится из известняков и доломитов, в том числе из палеозоя и докембрия; наиболее крупные месторождения открыты в мезозойских и палеозойских породах, прежде всего в странах Ближнего Востока. Крупные скопления в рифовых сооружениях мезозойского возраста открыты в бассейне Мексиканского залива (Золотой пояс, Кампече и др.). Из рифовых известняков были получены и рекордные дебиты (десятки тысяч тонн в сутки). Можно отметить некоторую связь между развитием карбонатных коллекторов и усилением карбонатонакопления в геологической истории, что связано с общей цикличностью геотектонического развития и периодичностью осадкообразования. Карбонатные коллекторы характеризуются специфическими особенностями: 1. Крайней невыдержанностью, значительной изменчивостью свойств, что затрудняет их сопоставление. 2. В них относительно легко происходят разнообразные диагенетические и катагенетические изменения. 3. Фациальный облик известняков в большей мере, чем в обломочных породах, влияет на формирование коллекторских свойств. 4. В минеральном отношении карбонатные породы менее разнообразны, чем обломочные, но по структурно-текстурным характеристикам имеют гораздо больше разновидностей. 5. В процессе изучения коллекторских свойств карбонатных толщ решающая роль играет генезис отложений и гидродинамика среды для формирования структуры пустотного пространства, которая может быть более или менее благоприятна для формирования коллекторов и определяет характер последующих преобразований . 6. Карбонатные породы легко подвергаются вторичным изменениям. Это связано с их повышенной растворимостью. Особенно велико влияние вторичных преобразований в породах с первично неоднородной структурой порового пространства. 7. По характеру постседиментационных преобразований карбонатные породы отличаются от терригенных. Прежде всего, это касается уплотнения. Остатки биогермов с самого начала представляют практически твердые образования, и далее уплотнение идет уже медленно. 8. Карбонатный ил также может быстро литифицироваться, при этом в нем возникают своеобразные фенестровые пустоты за счет выделения пузырьков газа. Мелкообломочные, комковато-водорослевые карбонатные осадки также быстро литифицируются. Пористость несколько сокращается, но вместе с тем значительный объем порового пространства «консервируется». В карбонатных породах отмечаются все виды пустот. В зависимости от времени возникновения они могут быть первичными (седиментационными и диагенетическими) и вторичными (постдиагенетическими). В органогенных карбонатных породах к первичным относятся пустоты внутрираковинные, в том числе внутри рифовых построек, а также межраковинные. Некоторые карбонатные породы могут быть хемогенного или биохемогенного происхождения, они образуют резервуары пластового типа. К ним относятся прежде всего оолитовые, а также известняки с меж- или внутриоолитовой пустотностью. Слоистым или массивным известнякам свойственны пелитоморфные или скрытокристаллические, а также кристаллические структуры. В кристаллических, особенно, в доломитизированных породах развита межкристаллическая (межзерновая) пористость. Карбонатные породы в большей мере, чем другие, подвержены вторичным преобразованиям (перекристаллизация, выщелачивание, стилолитообразование и др.), которые полностью меняют их физические свойства, а иногда и состав (процессы доломитизации и раздоломичивания). В этом состоит сложность выделения природных резервуаров, так как одна и та же порода в одних условиях может рассматриваться как коллектор с очень высокими свойствами, а в других, если нет трещин, может являться покрышкой. Созданию вторичных пустот способствуют процессы растворения (выщелачивания), перекристаллизации, в основном доломитизациии раздоломичивания или стилолитизации. Те или иные процессы сказываются по-разному в зависимости от генетического типа породы. Цементация может начаться очень рано и происходить быстро, как это хорошо видно на примере бичроков. Кальцитовый цемент выкристаллизовывается за счет выпаривания морской воды, заливающей пляж, и частичного растворения нестойких минералов. Пляжный карбонатный песок может отвердевать за несколько дней. Подобная почти мгновенная литификация происходила и в прошлые времена. Дальнейшая судьба оставшихся в каркасе такого «литификата» пустот может быть различна. При перекристаллизации происходит существенное изменение структуры и текстуры пород. В целом этот процесс направлен в сторону увеличения размера кристаллов. Если при перекристаллизации часть вещества выносится, пористость возрастает. Наибольшей вторичной пористостью обладают неравномерно перекристаллизованные породы. Рост крупных кристаллов способствует образованию микротрещин. Наиболее эффективное влияние на формирование вторичной пустотности оказывает выщелачивание и метасоматоз (в основном доломитизация). Растворение при выщелачивании проявляется по-разному в зависимости от большей или меньшей дисперсности слагающих породу частиц. Тонкодисперсные компоненты сильнее подвержены этому процессу. Растворимость так зависит от состава минералов и вод: арагонит растворяется лучше, чем кальцит, сульфатные воды более активно растворяют доломит и т.д. Анализ изменения фильтрационно-емкостных параметров, определяемых, в том числе выщелачиванием, устанавливает их весьма отчетливую связь со структурно-генетическими типами пород. Доломитизация является одним из ведущих факторов при формировании коллекторов. На образование доломита влияет соотношение в воде магния и кальция и общая величина солености. При более высокой концентрации солей требуется и большее количество растворенного магния. В процессе диагенеза доломит возникает за счет своих предшественников — таких, как магнезиальный кальцит. Первичная диагенетическая доломитизация не имеет существенного значения для формирования коллекторских свойств. Метасоматическая доломитизация в катагенезе более важна для преобразования коллекторов. Для доломитообразования необходимо поступление магния. Источники его могут быть различны. При катагенетических процессах в условиях повышенных температур растворы теряют магний, обменивая его на кальций вмещающих пород. На примере Припятского прогиба видно, что между составом рассолов и интенсивностью вторичной доломитизации устанавливается отчетливая зависимость. В тех стратиграфических зонах, где девонские карбонатные породы наиболее сильно доломитизированы, содержание магния в рассолах резко падает, он используется для образования доломита. При метагенетической доломитизации особенно заметно увеличение пористости, так как процесс идет в породе с жестким скелетом, которая трудно поддается уплотнению. Общий объем породы сохраняется, пустотность в ней за счет доломитизации повышается. Обратный процесс раздоломичивания (дедоломитизация) особенно распространен в приповерхностных условиях. Наиболее активно он проходит в разрезах, где доломиты содержат прослои сульфатов. При просачивании вод магний доломитов в растворах соединяется с радикалом SO42- и выносится в виде легко растворимого MgSO4. Происходит увеличение пористости пород. Но перенос сульфатов водами нередко приводит и к противоположным результатам с точки зрения качества коллекторов. Легко растворимый CaSO4 также легко выпадает в осадок и запечатывает поры. Так же может влиять и кальцитизация, которая часто выражается в наращивании регенерационных каемок и сужении порового пространства. Заканчивая рассмотрение карбонатных коллекторов, необходимо еще раз подчеркнуть то, что по сравнению с обломочными породами структура их порового пространства чрезвычайно разнообразна. Ненарушенная матрица имеет характеристики, которые определяются прежде всего первичной структурой, кавернозность сильно изменяет эти характеристики, а трещиноватость создает как бы две наложенные друг на друга системы пустот. Все это и определяет необходимость особой классификации коллекторов. Такая оценочно-генетическая классификация коллекторов была предложена К.И. Багринцевой (табл. 2).
Таблица 2 Оценочно-генетическая классификация карбонатных пород-коллекторов
Определяющим параметром предлагаемой классификации является проницаемость, предельные значения которой взяты из анализов коллекторских свойств пород различного генезиса и структурных особенностей. Минимальные и максимальные значения оценочных показателей (пористости, газонефтенасыщенности и др.) получены из корреляционных зависимостей между проницаемостью, пористостью и остаточной водой. Наиболее характерна связь остаточной водонасыщенности с абсолютной проницаемостью. В породах по мере улучшения фильтрационных свойств количество остаточной воды уменьшается. Пористость может быть различной, при этом даже высокие (более 15%) значения открытой пористости бывают в породах с низкими фильтрационными свойствами. Между открытой пористостью и остаточной водонасыщенностью связь неопределенная. Низкопористые породы всегда отличаются большим содержанием воды, а высокопористые имеют двойственную характеристику: хорошо проницаемые заключают небольшое количество воды, а плохо проницаемые — значительное (более 50%). В классификационной схеме все коллекторы подразделяются на три большие группы А, Б, В, внутри которых в свою очередь выделяются классы, характеризующиеся разными оценочными параметрами, литологическими и структурными особенностями. Группы А и Б представлены в основном коллекторами порового и каверново-порового типов, В — трещинного и смешанного типов. В породах группы А преобладают первичные пустоты, размеры которых увеличены в процессах последующего выщелачивания. В породах группы Б развиты седиментационные поровые каналы; меньшую роль играют пустоты выщелачивания. Строение пустотного пространства в породах группы А значительно проще, чем в группе Б, а наиболее сложно оно в группе В. Здесь преобладают мелкие извилистые, плохо сообщающиеся каналы. Коллекторы I и II классов в группе А обладают в основном унаследованными высокими фильтрационными и емкостными параметрами. В III, IV и V классы попадают породы обломочно-органоген ные и биохемогенные с низкими первичными коллекторскимк свойствами. Вторичное минералообразование, перекристаллизация, доломитизация, раздоломичивание, особенно сопровождающиеся выщелачиванием и выносом материала, улучшают их свойства. В VI и VII классах выделены породы таких хемогенных и биохемогенных разностей, петрофизические характеристик которых никогда не достигают высоких значений. Но здесь в большей степени, чем в породах высших классов, проявляется другой фактор — трещиноватость. ТРЕЩИННЫЕ КОЛЛЕКТОРЫ По формированию пустотного пространства трещинные коллекторы отличаются от других типов. Для определения трещинной пустотности и проницаемости существуют особые способы. Как уже упоминалось, существуют макро- и микротрещины раскрытием соответственно более или менее 0, 1 мм. Макротрещины обычно изучаются, описываются и измеряются в поле обнажении, а микротрещины — под микроскопом в шлифах часто увеличенного размера. Необходимым элементом при исследовании трещин является определение их ориентации как в пространстве (вертикальные, горизонтальные, наклонные), так и отношению к пласту (по слоистости, поперек слоистости, диагональные) и к структурным формам (продольные, поперечные, радиальные и др.). В генетическом отношении выделяются литогенетические и тектонические трещины (табл.3).
Таблица 3 Основные виды трещин в осадочных горных породах
Литогенетические трещины по приуроченности к определенным стадиям подразделяются надиагенетические, катагенетические гипергенетические. Тектонические трещины различаются по причинам, их вызывающим: колебательные движения, складчатые и разрывные дислокации. Одни виды трещин могут переходить в другие, но в принципе опытный геолог всегда отличит литологическую трещиноватость от тектонической. Как правило, литологическая трещиноватость приспосабливается к структурно-текстурным особенностям породы. Трещины ветвятся, огибают отдельные зерна, в целом расположение их хаотично. Поверхность стенок трещин неровная. Тектонические трещины более прямолинейны, они меньше считаются со структурно-текстурными особенностями пород, поверхность их стенок более гладкая и переходит иногда в зеркала скольжения. Различные породы в разной степени подвержены трещиноватости. Наибольшей способностью к растрескиванию обладают мергели и пелитоморфные известняки, затем следуют кремнистые породы, сланцы, песчаники. Наименее трещиноваты соли. Подмечено, что существует определенная зависимость между толщиной пластов и интенсивностью трещиноватости — при одном и том же составе в более мощных пластах расстояния между трещинами больше. Наблюдения из космоса, материалы аэрофотосъемок, описания обнажений показывают, что существуют трещины и трещинные зоны разных масштабов. Выделяются элементы очень крупной планетарной системы трещиноватости, приуроченные, возможно, к сочленениям крупных тектонических блоков земной коры. Эти трещиноватые зоны являются основой так называемых линеаментов на поверхности Земли. Одна из крупных линеаментных зон прослеживается от Урала, через Среднюю Азию уходит в район Персидского залива и далее в Оман (Урало-Оманский линеамент). Другие меньшие по размерам линеаменты, отражающие зоны повышенной трещиноватости, известны в Восточном Предкавказье. Выделение и картирование таких зон является первостепенной задачей особенно в практическом отношении. Важным является вопрос о выполнении трещин. Они могут быть свободными и частично или полностью выполнены какими-либо веществами, высадившимися из циркулирующих в них растворов. Чаще всего трещины заполнены карбонатными минералами, кварцем, сульфатами, глинистым материалом (часто пропитанным битуминозным веществом) и остаточными продуктами преобразования углеводородов (черно-битумные трещины). На стенках трещин нередко встречается и капельно-жидкая нефть. Основными элементами трещин при замерах являются их ориентировка (в пространстве, по отношению к пластам и др.), их протяженность и раскрытость. Кроме того, можно говорить о густоте и плотности трещин. При определении густоты учитывается количество трещин одной системы на единицу длины перпендикуляру к этой системе трещин. Для макротрещин единицу длины берется 1 м, для микротрещин (определяется в шлифах) — 1 мм. Под плотностью трещин принимается общее количество всех систем в единице объема или на единице площади (поверхность обнажения, площадь шлифа). Пустотное пространство трещинных коллекторов подразделяется на две категории. С одной стороны, это поры и другие пустоты в матрице породы (в ненарушенных трещинами блоках), с другой стороны — объем самих трещин, связанных с ними каверн и т.д. Свойство пород блоков (матрицы) определяется обычным способом. Объем трещин обычно не велик, но вследствие сравнительной простоты структуры, преобладающей прямолинейности трещин фильтрация через них может быть весьма эффективна. Трещинная пустотность — это отношение объема трещин к объему породы: mт = b*1/S, где b — раскрытость трещин (среднестатистическое расстояние между стенками трещин); 1 — общая их протяженность в образце; S — площадь изучения. Зависимость проницаемости трещин от раскрытости и трещинной пустотности выражается соотношением: Кт = 85 000 b3mT, где b — раскрытость трещин, мм; тт — трещинная пустотность, доли единицы; Кт — трещинная проницаемость, мкм2. Приведенное соотношение справедливо для тех случаев, когда поверхности стенок трещин перпендикулярны к поверхности фильтрации. При наличии нескольких систем трещин и их различной ориентированности по отношению к потоку фильтрации следует применять различные числовые коэффициенты. Кроме изучения в образцах (макротрещиноватость) и в шлифах (микротрещиноватость) трещиноватость изучают также гeoфизическими и гидродинамическими методами, фотографированием стенок скважин, но каждый из этих методов имеет свои погрешности. Степень трещиноватости пород и, следовательно, выделение соответствующих зон в разрезе могут быть произведены на основе данных акустического каротажа (АК).
НЕТРАДИЦИОННЫЕ КОЛЛЕКТОРЫ К породам, роль которых в нефтегазоносности пока еще невелика по сравнению с вышеописанными, относятся толщи, сложенные глинистыми, кремнистыми, вулканогенными, интрузивными, метаморфическими породами и др. Их можно разделить на две группы. В одних нефтегазоносность обычно сингенетична, в других она связана с приходом углеводородов из соседних толщ. 1. В глинистых породах природные резервуары возникают в процессе катагенеза. Само возникновение пустот связано с генерацией нефтяных и газовых углеводородов и перестройкой структурно-текстурных особенностей минеральной матрицы породы. Одним из характерных примеров является толща глин баженовской свиты в Западной Сибири. От подстилающих и перекрывающих пород отложения баженовской свиты отличаются повышенным содержанием органического вещества (от 5 до 20% и более) и повышенным содержанием кремнезема. Породы обладают пониженной плотностью (2, 23-2, 4 г/см3) по сравнению с ниже- и вышележащими толщами. По мнению Т.Т. Клубовой, в седиментогенезе происходило образование микроблоков, покрытых пленкой сорбированного органического вещества. Колломорфный кремнезем, обволакивая агрегаты глинистых ми нералов, создает на их поверхности сложные комплексы с участием органического вещества и кремнезема (возникают так называемые кремнеорганические «рубашки»). Процессы трансформации глинистых минералов и выделения связанной воды приводят к образованию мелких послойных трещин. На определенной глубине зон возникают разуплотнения. Какие-то участки породы вследствие роста внутреннего давления пронизываются системой трещин вдоль поверхности «рубашек». При вскрытии пород баженовской свиты, как правило, отмечаются разуплотне- ние и аномально высокое пластовое давление. В результате возникают зоны с повышенными коллекторскими свойствами, ограниченные со всех сторон менее измененными и проницаемыми породами. 3aчастую эти участки никак не связаны со структурно-тектоническими особенностями региона. Так, видимо, образовались резервуары в баженовской карбонатно-кремнисто-глинистой толще верхней юры в Западной Сибири (Салымское месторождение и др.). Сходным образом могли формироваться коллекторы в майкопской глинистой серии Ставрополья (Журавское месторождение и др.). Можно сделать вывод о том, что в этих коллекторах совпадает во времени формирование коллекторских свойств и генераций нефтяных углеводородов. Повышению растресканности породы способствуют и некоторые тектонические процессы. При отборе нефти из таких пород трещины смыкаются, таким образом, бажениты и другие сходные породы являются коллекторами как бы «одноразового использования». В них нельзя закачать газ или нефть, как это делают при строительстве подземных хранилищ других типах пород. 2. По-другому протекают процессы в кремнистых толщах биогенного происхождения. На первых этапах осадкообразования начальных этапов диагенеза формируется «ажурная» органогенная структура из раковинок кремнестроящих организмов. В дальнейшем преобразование органогенной структуры тесно связано преобразованием аморфных форм кремнезема (опал) в кристаллические формы. При переходе опала А в опал КТ появляется глобулярная микротекстура и формируется межглобулярный тип коллектора. При повышенном содержании сапропелевого ОВ повышенной каталитической роли поверхностно-активного кремнезема начинаются процессы генерации углеводородов. Коллекторы для них уже подготовлены в этих же толщах, свойства их высоки (пористость достигает 40%). Нефти в биогенно-кремнистых толщах считаются нефтями раннего созревания. При дальнейшем усилении катагенеза происходят обезвоживание, переход кремнезема в другие минеральные формы — халцедон, а затем кварц. В породах развивается трещиноватость, связанная система трещин способствует образованию резервуара пластового или массивного типа с коллектором трещинного типа. На шельфе Калифорнии находится несколько месторождений, где кремнистые породы формации Монтерей миоцена промышленно нефтеносны. Самым крупным является месторождение Пойнт-Аргуэльо. На Сахалине в таких толщах также открыто два месторождения. Сходным образом возникают резервуары в кремнисто-глинисто-карбонатных богатых ОВ так называемых доманикоидных толщах. 3. Коллекторы в породах магматического и метаморфического происхождения известны давно. В частности, нефть обнаружена в вулканитах, во вторично измененных пористых лавах и туфах и Мексике, Японии и в других местах. Нефть и газ в туфах, лавах и других разностях связаны с пустотами, которые образовались при выходе газа из лавового материала или со вторичным выщелачиванием. Нефтеносность этих пород всегда вторична. 4. В вулканических породах в Западном Азербайджане открыто месторождение Мурадханлы. Залежи нефти в породах вулканогенного комплекса эоценового возраста открыты в Восточной Грузии. Известны скопления нефти в метаморфизованных породах фундамента в Алжире, в измененных серпентинитах на Кубе и т.д. Притоки нефти получены из коры выветривания гранитно-метаморфических пород, залегающих в ядрах мезозойских поднятий в Шаимском районе Западной Сибири. На площади Оймаша на Южном Мангышлаке получена нефть из зоны вторично измененных гранитов. 5. Однако подлинный бум вызвало открытие нефти в гранито-гнейсовых породах на шельфе Вьетнама (месторождение Белый Тигр и др.). Эти породы участвуют в строении месторождений, массивы их облекаются третичными осадочными породами, гранитные тела внедряются в осадочные породы. Возникновение коллекторских свойств в них связано с метасоматозом и выщелачиванием в результате гидротермальной деятельности, с явлениями контракции (усадкой) при остывании, с дроблением по зонам тектонических нарушений. В результате действия растворов, выщелачивания полевых шпатов в породах образуются крупные каверны. В результате воздействия перечисленных процессов возникли субгоризонтальная и субвертикальная зональности в распределении проницаемых участков и сложились три типа пустотности: трещинная, трещинно-каверновая и поровая. Основной объем пустот в магматическом коллекторе принадлежит микротрещинам и микрокавернам. Основное пустотное пространство тектонического происхождения связано с трещино-ватостью, катаклазированием и милонитизацией, в результате чего породы раздроблены в щебенку. Контракционная усадка при остывании привела к созданию контракционной пустотности. Пористость пород в большинстве случаев не превышает 10-11 %. Проницаемость матрицы невысока, но в результате развития кавернозности и трещиноватости в целом проницаемость достигает сотен миллидарси. Зоны улучшенных коллекторов обеспечивают притоки нефти в сотни тонн. Учитывая необходимость сопоставления основных параметров двух ведущих групп коллекторов — обломочных (гранулярных) и карбонатных, — авторы предлагают общую классификацию этих коллекторов (табл.4). Она основана на сопоставлении исходных классификаций, в ней учтены как структурные признаки породы, так отчасти и их состав. Выделение классов производится в основном по величине открытой пористости, при этом ее границы, а также проницаемость в классах очень широкие (соответственно 10-20%, 100—1000 мД). Этот недостаток может быть ликвидирован введением подклассов в зависимости от развития конкретных разностейпород в том или ином районе со свойственными им вещественно-структурными характеристиками и параметрами. Например, в классе 2 можно выделять подкласс 2а с хорошо отсортированными малоцементными песчаниками и 2б — с песчаниками, содержащими повышенное количество цемента и соответственно со сниженной емкостью и особенно проницаемостью. В классе 4 слабо измененные пелитоморфные и мелкозернистые известняки имеют удовлетворительную емкость, но низкую проницаемость. Сюда же могут быть отнесены комковатые выщелоченные известняки или строматолитовые, обладающие повышенными свойствами. Укрупненные классы полезны для выявления общих тенденций изменения свойств на значительных площадях частях разреза.
Таблица 4 Общая классификация коллекторов Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 4507; Нарушение авторского права страницы