Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Методы исследования в гистологии.
Как любая наука гистология располагает своим арсеналом методов исследований: I. Основной метод — микроскопирование. А. Световая микроскопия — исследования обычным световым микроскопом. Б. Специальые методы микроскопирования: - фазовоконтрастный микроскоп (для изуч. живых неокраш-х обьектов) - темнопольный микроскоп (для изуч. живых неокраш-х обьектов) - люминесцентный мик-п (для изуч. живых неокраш-х обьектов) -ультрафиолетовый мик-п (повышает разрешающую способность м-па) -поляризационный мик-п(для иссл. обьектов с упорядочонным располажением молекул — скелет. муск-ра, коллагеновые волокна и т.д.) -интерфекренционная микроскопия (для опред-я сухового остатка в клетках, определение толщины обьектов) В. Электронная микроскопия: -трансмиционная (изучение обьектов на просвет) -сканирующий (изучение поверхности обьектов) II. Специальные (немикроскопические) методы: 1.Цито- или гистохимия — суть заключается использовании строгоспецифических химических реакций с светлым конечным продуктом в клетках и тканях для определения количества различных веществ(белков, ферментов, жиров, углеводов и т. д.). Можно применить на уровне светового или электронного микроскопа. 2. Цитофотометрия — метод применяется в комплексе с 1 и дает возможность количественно оценить выявленные цитогистохимическим методом белки, ферменты и т.д. 3. Авторадиография — вводят в организм вещества, содержащие радиоактивные изотопы химических элементов. Эти вещества включаются в обменные процессы в клетках. Локализацию, дальнейшие перемещения этих веществ в органах определяются на гистопрепаратах по излучению, которое улавливается фотоэмульсией, нанесенной на препарат. 4. Рентгентоструктурный анализ — позволяет определить количество химических элементов в клетках, изучить молекулярную структуру биологических микрообьектов. 5. Морфометрия — измерение размеров биол. структур на клеточном и субклеточном уровне. 6. Микроургия — проведение очень тонких операций микроманипулятором под микроскопом (пересадка ядер, введение в клетки различных веществ, измерение биопотенциалов и т.д.) 6. Метод культивирования клеток и тканей — в питательных средах или в диффузионных камерах, имплантированных в различные ткани организма. 7. Ультрацентрофугирование — фракционирование клеток или субклеточных структур путем центрофугирования в растворах различной плотности. 8. Экспериментальный метод. 9. Метод трансплантации тканей и органов. Ц И Т О Л О Г И Я Формы организации живой материи: I. Доклеточная: 1) вирусы: а. ДНК-содержащие б. РНК-содержащие Основу составляет ДНК или РНК, окруженная оболочкой. В окружающей среде могут сохраниться определенное время, но самостоятельно в окружающей среде размножаться не могут — размн. только в клетке-хозяине. 2) бактериофаги. II. Клеточная форма: 1) Прокариоты («доядерные»): а) бактерии — одноклеточные организмы. Имеют хорошо выраженную оболочку, небольшое разнообразие органоидов, деление — прямое. Наследственный материал не обособлен, диффузно разбросан по всей цитоплазме — т.е. ядра еще нет = доядерные. б) сине-зеленые водоросли — сходны с бактериями. 2) Эукариоты («хорошое ядро») — клетки имеют хорошо выраженное, обособленное ядро; большое разнообразие органоидов; размножение путем митоза. Эукариоты — клетки растений и животных организмов. III. Неклеточная форма: 1) межклеточное вещество соед-х тканей (волокна, основное вещество). 2) синцитий — клетки соединены цитоплазматическими мостиками, по которым из цитоплазмы одной клетки можно перейти в другую клетку. Пример в челов. орг-ме — сперматогонии на стадии размножения. 3) симпласт — это огромная единая масса цитоплазмы, где разбросаны сотни тысяч ядер и органоидов. Пример — скелетная мускулатура и симпластический трофобласт в хорионе и ворсинках хориона в плаценте. Основные положения современной клеточной теории: I. Клетка — наименьшая элементарная единица живого, вне которой нет жизни. II. Клетки гомологичны — т.е. при всем богатом разнообразии все клетки растений и животных построены по единому общему принципу. III. Клетка от клетки и только от клетки, т.е. новая клетка образуется путем деления исходной клетки. IV. Клетка — часть целостного организма. Клетки обьединены в системы тканей и органов, из системы органов — целый организм. При этом совокупность всех свойств каждого вышестоящего уровня больше, чем простая сумма свойств его составляющих, т.е. свойства целого больше, чем простая сумма свойств составляющих частей этого целого. Клетка — это элементарная живая система, состоящая из цитоплазмы, ядра, оболочки и являющаяся основой развития, строения и жизнедеятельности животных и растительных организмов. Клетка состоит из ядра, цитоплазмы и оболочки (цитолемма). Ядро — часть клетки, являющееся хранилищем наследственной информации. Окружено кариолеммой (два листка элементарной биомембраны), имеющей поры. В ядре содержится кариоплазма, основу которой составляет ядерный белковый матрикс (структурная сеть из негистоновых белков). В ядерном белковом матриксе располагается хроматин — ДНК в комплексе с гистоновыми и негистоновыми белками. Хроматин может быть деконденцированным (разрыхленным, светлым) — эухроматин («эу»- хороший) и наоборот, конденсированным (плотно упакованным, темным) — гетерохроматин. Чем больше эухроматина, тем интенсивнее синтетические процессы в ядре и цитоплазме, и наоборот, преобладание гетерохроматина показывает на снижение синтетических процессов, на состояние метаболического покоя. Ядрышко — самая плотная, интенсивно окрашивающаяся структура ядра с диаметром 1-5 мкм — является производным хроматина, одним из его локусов. Функция: образование рРНК и рибосом. Цитолемма — это элементарная биологическая мембрана покрытая снаружи более или менее выраженным гликокаликсом. Основу элементарной биологической мембраны составляет бимолекулярный слой липидов, обращенных друг к другу гидрофобными полюсами; в этот бимолекулярный слой липидов вмонтированы интегральные (пронизывают всю толщу липидов), полуинтегральные (между молекулами липидов наружного или внутреннего слоя) и периферические (на внутренней и наружной поверхности бимолекулярного слоя липидов) белковые молекулы. Гликокаликс — это гликолипидный и гликопротеиновый комплекс на наружной поверхности цитолеммы, содержит сиаловую кислоту; снижает скорость диффузии веществ через цитолемму, тамже локализуются ферменты участвующие во внеклеточном расшиплении веществ. На наружной поверхности цитолеммы могут иметься рецепторы: - «узнавание» клетками друг друга; - рецепция воздействия химических и физических факторов; - рецепция гормонов, медиаторов, А-гена и т.д. Функции цитолеммы: - разграничительная; - активный и пассивный транспорт веществ в обе стороны; - рецепторные функции; - механический контакт с соседними клетками. Гиалоплазма — это гомогенная, под микроскопом бесструктурная масса; по химической природе представляет собой коллоидную систему и состоит из дисперсной среды (вода и растворенные в ней соли) и дисперсной фазы (взвешанные в дисп. среде мицеллы белков, жиров, углеводов и некоторых других органических веществ); эта система может переходит из состояния золь в гель. Компартменты — это структуры, находящиеся в гиалоплазме, имеющие определенное строение (форму и размеры), т.е. видимые под микроскопом. К компартментам относятся органоиды и включения. Органоиды — постоянные структуры цитоплазмы, имеющие определенное строение и функции. Органоиды классифицируются по строению и по функцию. По строению различают: 1. Органоиды общего назначения (имеются в большем или меньшем количестве во всех клетках, обеспечивают функции необходимые всем клеткам): митохондрия, эндоплазматическая сеть, пластинчатый комплекс, лизосомы, клеточный центр, пероксисомы. 2. Органоиды специального назначения — (имеются только в клетках высокоспециализированных тканей и обеспечивают выполнение строгоспецифических функций этих тканей): в эпителиальных клетках — реснички, микроворсинки, тонофибриллы; в нейральных тканях — нейрофибриллы и базофильное вещество; в мышечных тканях — миофибриллы. По строению органиоды подразделяются: 1. Мембранные — эндоплазматическая сеть, митохондрии, пластинчатый комплекс, лизосомы, пероксисомы. 2. Немембранные — рибосомы, микротрубочки, центриоли, реснички. Строение и функции органоидов: 1. Митохондрии — структуры округлой, овальной и сильновытянутой эллепсоидной формы. Окружены двойной элементарной мембраной: наружная элементарная мембрана имеет ровную поверхность, внутренняя мембрана образует складки — кристы; полость внутри внутренней мембраны заполнена матриксом — гомогенная бесструктурная масса. Функция: митохондрии называют»энергетическими станциями» клетки, т.е. там происходит аккумулирование энергии в виде АТФ, выделяемое при «сжигании» белков, жиров, углеводов и др. веществ. Короче, митохондрии — поставщики энергии. 2. Эндоплазматическая сеть(ЭПС) — это система (сеть) внутриклеточных канальцев, стенки которых состоит из элементантарных биологических мембран. Различают ЭПС гранулярного типа (в стенки ЭПС вмонтированы гранулы = рибосомы) — с фукнцией синтеза белков, и агранулярного типа (канальцы без рибосом) — с функцией синтеза жиров, липидов и углеводов. 3. Пластинчатый комплекс (Гольджи) — система наслоенных друг на друга уплощенных цистерн, стенка которых состоит из элементарной биологической мембраны, и расположенных рядом пузырьков (везикул). Располагается обычно над ядром, и выполняет функцию — завершение процессов синтеза веществ в клетке, расфасовка продуктов синтеза по порциям в везикулы, ограниченных элементарной биологической мембраной. Везикулы в дальнейшем транспортируются в пределах данной клетки или выводятся экзоцитолизом за пределы клетки. 4.Лизосомы — структуры округлой или овальной формы, окружены элементарной биологической мембраной, содержащие внутри полный комплект протеолитических и других литических ферментов. Функция — обеспечивают внутриклеточное переваривание, т.е. последнюю фазу фаго (пино)цитоза. 5.Пироксисомы — мелкие структуры округлой или овальной формы, окруженные элементарной базальной мембраной, содержащие внутри пероксидазу, обеспечивающая обезвреживание перекисных радикалов — продуктов обмена веществ, подлежащих удалению из организма. 6.Клеточный центр — органоид обеспечивающий двигательную функцию (растаскивание хромосом) при делении клетки. Состоит из 2-х центриолей; каждая центриоля представляет собой цилиндрическое тело, стенка которого образована 9-ю парами микротрубочек расположенных по периферии цилиндра вдоль и 1-й парой микротрубочек в центре. Центриоли располагаются по отношению друг к другу перпендикулярно. При делении клетки центриоли располагаются на двух противоположных полюсах и обеспечивают растаскивание хромосом к полюсам. 7.Реснички — органоиды, аналогичные по строению и функцию с центриолями, т.е. имеют сходное строение и обеспечивают двигательную функцию. Ресничка представляет собой вырост цитоплазмы на поверхности клетки, покрытый цитолеммой. Вдоль этого выроста внутри располагаются 9 пар микротрубочек, расположенных параллельно друг к другу, образуя цилиндр; в центре этого цилиндра вдоль, а следовательно и в центре реснички, располагается еще 1 пара центральных микротрубочек. У основания этого выроста-реснички, перпендикулярно к ней, располагается еще одна аналогичная структура. 8.Микроворсинки — это выросты цитоплазмы на поверхности клеток, покрыты снаружи цитолеммой, увеличивают площадь поверхности клетки. Встречаются в эпителиальных клетках, обеспечивающих функцию всасывания (кишечник, почечные канальцы ). 9, Миофибриллы — состоят из сократительных белков актина и миозина, имеются в мышечных клетках и обеспечивают процесс сокращения. 10.Нейрофибриллы — встречаются в нейроцитах и представляют собой совокупность нейрофибрилл и нейротрубочек. В теле клетки располагаются беспорядочно, а в отростках — параллельно друг к другу. Выполняют функцию скелета нейроцитов (т.е. функция цитоскелета), а в отростках участвуют в транспортировке веществ от тела нейроцитов по отросткам на периферию. 11.Базофильное вещество — имеется в нейроцитах, под электронном микроскопом соответствует ЭПС гранулярного типа, т.е. органоида, ответственного за синтез белков. Обеспечивает внутриклеточную регенерацию в нейроцитах (обновление изношенных органоидов, при отсутствии способности нейроцитов к митозу). 12. Пероксисомы — овальные тельца (0, 5-1, 5 мкм) окруженные элементарной мембраной, заполненные гранулярным матриксом с кристаллоподобными структурами; содержат каталазы для разрушения перекисных радикалов. Функция: обезвреживание перекисных радикалов, образующихся при метаболизме в клетках. Включения — непостоянные структуры цитоплазмы, могущие появляться или исчезать, в зависимости от функционального состояния клетки. Классификация включений: I. Трофические включения — отложенные в запас гранулы питательных веществ (белки, жиры, углеводы). В качестве примеров можно привести: гликоген в нейтрофильных гранулоцитах, в гепатоцитах, в мышечных волокнах; жировые капельки в гепатоцитах и липоцитах; белковые гранулы в составе желтка яйцеклеток и т. д. II. Пигментные включения — гранулы эндогенных или экзогенных пигментов. Примеры: меланин в меланоцитах кожи (для защиты от УФЛ), гемаглобин в эритроцитах (для транпортировки кислорода и углекислого газа), родопсин и йодопсин в палочках и колбочках сетчатки глаза (обеспечивают черно-белое и цветное зрение) и т.д. III. Секреторные включения — капельки (гранулы) секрета веществ, подготовленные для выделения из любых секреторных клеток (в клетках всех экзокринных и эндокринных желез). Пример: капельки молока в лактоцитах, зимогенные гранулы в панкреатоцитах и т.д. IV. Экскреторные включения — конечные (вредные) продукты обмена веществ, подлежащие удалению из организма. Пример: включения мочевины, мочевой кислоты, креатинина в эпителиоцитах почечных канальцев
Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1021; Нарушение авторского права страницы