Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Организм как функциональная система ⇐ ПредыдущаяСтр 3 из 3
У человека более 200 костей (85 парных и 36 непарных) которые в зависимости от формы и функций делятся на: трубчатые (выполняют в основном защитную и опорную функции – ребра, грудина, позвонки и др.); плоские (кости черепа, таза); смешанные (основание черепа). В состав кости входят органические и неорганические вещества. Эластичность, упругость костей зависит от наличия в них органических веществ, а твердость обеспечивается минеральными солями. На рост и формирование костей существенное влияние оказывают социально-экологические факторы: питание, окружающая среда и т.д. Недостаток витаминов C, D, калия и фосфора делает их более хрупкими. Скелет человека состоит из: позвоночник, состоящий из 33-34 позвонков, и имеет пять отделов: шейный (7 позвонков), грудной (12 позвонков), поясничный (5), крестцовый (5), копчиковый (4-5). Функции опорно-двигательной системы. Скелет и мышцы - опорные структуры и органы движения человека. Они выполняют защитную функцию, ограничивая полости, в которых расположены внутренние органы. Так, сердце и легкие защищены грудной клеткой и мышцами груди и спины; органы брюшной полости (желудок, кишечник, почки) - нижним отделом позвоночника, костями таза, мышцами спины и живота; головной мозг расположен в полости черепа, а спинной мозг - в позвоночном канале. Костная ткань. Кости скелета человека образованы костной тканью - разновидностью соединительной ткани. Костная ткань снабжена нервами и кровеносными сосудами. Клетки ее имеют отростки. Межклеточное вещество составляет 2/3 костной ткани. Оно твердое и плотное, по своим свойствам напоминает камень. Костные клетки и их отростки окружены мельчайшими " канальцами", заполненными межклеточной жидкостью. Через межклеточную жидкость канальцев происходит питание и дыхание костных клеток. Строение костей. Величина и форма костей скелета человека различны. Кости могут быть длинными и коркткими. Длинные кости называют также трубчатыми. Они полые. Такое строение длинных костей обеспечивает одновременно их прочность и легкость. Известно, что металлическая или пластмассовая трубка почти так же прочна, как равный ей по длине и диаметру сплошной стержень из того же материала. В полостях трубчатых костей находится соединительная ткань, богатая жиром, - желтый костный мозг. Головки трубчатых костей образованы губчатым веществом. Пластинки костной ткани перекрещиваются в направлениях, по которым кости испытывают наибольшее растяжение или сжатие. Такое строение губчатого вещества также обеспечивает прочность и легкость костей. Промежутки между костными пластинками заполнены красным костным мозгом, который является кроветворным органом. Короткие кости образованы в основном губчатым веществом. Такое же строение имеют плоские кости, например лопатки, ребра. Поверхность костей покрыта надкостницей. Это тонкий, но плотный слой соединительной ткани, сросшийся с костью. В надкостнице проходят кровеносные сосуды и нервы. Концы костей, покрытые хрящом, не имеют надкостницы. Рост костей. В детстве и юности кости людей растут в длину и толщину. Формирование скелета заканчивается к 22-25 годам. Рост кости в толщину связан с тем, что клетки внутренней поверхности надкостницы делятся. При этом на поверхности кости образуются новые слои клеток, а вокруг этих клеток - межклеточное вещество. В длину кости растут за счет деления клеток хрящевой ткани, покрывающей концы костей. Рост костей регулируют биологически активные вещества, например гормон роста, выделяемый гипофизом. При недостаточном количестве этого гормона ребенок растет очень медленно. Такие люди вырастают не выше детей 5-6-летнего возраста. Это карлики. Если в детстве гипофиз вырабатывает слишком много гормона роста, вырастает великан - человек ростом до 2 м и выше. При усилении функции гипофиза у взрослого человека непропорционально разрастаются некоторые части тела, например пальцы рук, ног, нос. У взрослых кости не удлиняются и не утолщаются, но замена старого костного вещества новым продолжается всю жизнь. Костное вещество способно перестраиваться под влиянием нагрузки, действующей на скелет. Например, кости больших пальцев стопы, на которые опирается балерина, утолщены, их масса облегчена благодаря расширению внутренней полости. Чем больше нагрузка на скелет, тем активнее идут процессы обновления и тем прочнее костное вещество. Правильно организованный физический труд, занятия физкультурой в то время, когда скелет еще только формируется, способствуют его развитию и укреплению. Состав кости. Кости образованы органическими и неорганическими веществами. Значение минеральных и органических веществ легко выяснить, проделав простой опыт. Если долго прокаливать кость, то из нее удаляется вода, а органические соединения сгорают. Когда это делают осторожно, кость не теряет своей формы, но становится настолько хрупкой, что при прикосновении рассыпается на мелкие, твердые частицы, состоящие из неорганических веществ. Неорганические вещества придают костям твердость. Можно удалить из кости и неорганические соединения - карбонат и фосфат кальция. Для этого кость выдерживают в течение суток в 10-процентном растворе НС1. Соли кальция постепенно растворяются, и кость становится настолько гибкой, что ее можно завязать в узел. Органические соединения придают кости гибкость и упругость. Сочетание твердости неорганических соединений с упругостью органических обеспечивает прочность костей. Наиболее прочные кости взрослого, но не старого человека. Соединение костей. Скелет взрослого человека состоит примерно из 220 костей, которые соединены между собой. Некоторые соединения костей совершенно неподвижны, например соединения костей черепа (швы), другие - подвижны или полуподвижны. Подвижные соединения костей называют суставами, например бедренный, коленный, локтевой суставы. На одной из костей, сочленяющихся в суставе, обычно находится ямка - суставная впадина. В нее входит соответствующая ей по форме головка другой из сочленяющихся костей. Впадина и головка покрыты слоем блестящего гладкого хряща. Это облегчает скольжение головки во впадине при движениях в суставе. Кости, образующие суставы, соединяются очень прочными связками. Сверху сустав покрыт суставной сумкой. В ней находится суставная жидкость. Она уменьшает трение и способствует скольжению головки кости в суставной впадине. Хрящи, связки, суставная сумка относятся к соединительной ткани. Полуподвижные соединения костей с хрящевыми прокладками называют полусуставами. Скелет головы. Череп состоит из мозгового и лицевого отделов. Мозговой отдел черепа образован прочно и неподвижно соединенными между собой костями. Это парные теменные и височные, непарные лобная и затылочная кости. В височной кости имеется отверстие наружного слухового прохода. На нижней поверхности затылочной кости есть большое затылочное отверстие, через которое полость черепа соединяется с позвоночным каналом. Кости основания черепа пронизаны мелкими отверстиями. Через них проходят черепно-мозговые нервы и кровеносные сосуды. В лицевом отделе черепа 15 костей. Самые крупные из них челюстные. Нижнечелюстная кость - единственная подвижная кость черепа. На обеих челюстях имеются ячейки, в которых расположены корни зубов. Скелет туловища. Позвоночник, или позвоночный столб, состоит из 33-34 коротких костей - позвонков. Каждый позвонок имеет тело и несколько отростков. Позвонки расположены друг над другом. Между позвонками находятся прослойки упругой хрящевой ткани, обеспечивающие гибкость позвоночника. Внутри позвоночника в позвоночном канале расположен спинной мозг. В позвоночнике человека различают шейный, грудной, поясничный, крестцовый и копчиковый отделы. Грудная клетка, образована 12 парами ребер и грудиной. С каждым грудным позвонком сочленена одна из 12 пар ребер. Сочленение ребер с позвонками позволяет изменять их положение: приподниматься во время вдоха и опускаться во время выдоха. Скелет верхних конечностей. Ключицы и лопатки образуют скелет плечевого пояса. К нему подвижно прикрепляется скелет свободной верхней конечности. Он состоит из костей плеча, предплечья и кисти. Кости конечностей соединены подвижно. Конечности обеспечивают передвижение человека в пространстве и действуют как сложные системы рычагов. Скелет нижних конечностей. Две массивные плоские тазовые кости сзади прочно сращены с крестцом, а спереди соединены между собой. Они составляют пояс нижней конечности. В впадину каждой из тазовых костей входит шаровидная головка бедренной кости. Скелет свободной нижней конечности состоит из массивной бедренной кости, костей голени и стопы. Особенности скелета человека, связанные с прямохождением и трудовой деятельностью. Человека характеризует вертикальное положение тела, опирающегося только на нижние конечности. Позвоночник взрослого человека имеет изгибы. Во время быстрых, резких движений изгибы пружинят и смягчают толчки. У млекопитающих животных, которые опираются на четыре конечности, позвоночник таких изгибов не имеет. Грудная клетка человека в связи с прямохождением расширена в стороны. У млекопитающих животных она сжата с боков. Одна из самых характерных черт скелета человека - это строение руки, ставшей органом труда. Кости пальцев подвижны. Самый подвижный, большой палец, хорошо развитый у человека, располагается напротив всех остальных, что важно для различных видов работы - от колки дров, требующей сильных размашистых движений, до сборки ручных часов, которая связана с тонкими и точными движениями пальцев. В связи с вертикальным положением тела человека пояс его нижних конечностей очень широк и имеет вид чаши. Он служит опорой для внутренних органов брюшной полости. У млекопитающих животных таз значительно уже, чем у человека. Массивные кости нижних конечностей человека толще и прочнее костей рук, так как ноги несут на себе всю тяжесть тела. Сводчатая стопа человека при ходьбе, беге, прыжках пружинит, смягчает толчки. В скелете головы человека мозговой отдел черепа преобладает над лицевым. Это связано с большим развитием головного мозга человека. Конечности у позвоночных являются органами опоры и передвижения (локомоция). Существует генетическая связь между конечностями наземных животных и плавниками рыб. Согласно взгляду биолога-эволюциониста академика Н.А.Северцова, конечности наземных позвоночных развились из плавников примитивных кистеперых рыб, которые могли ползать по дну мелких водоемов. И сейчас существуют рыбы, которые выползают на берег и, пользуясь своими плавниками, передвигаются по суше на значительное расстояние и даже забираются на деревья. Изменения в конечностях у предков наземных позвоночных состояли, по мнению Н.А.Северцова, в том, что костные элементы плавников преобразовались в систему рычагов, способных к разнообразным движениям. Усиление подвижности конечностей вызвало общий подъем жизнедеятельности, повысило активность животных и тем самым способствовало их прогрессивной эволюции. Скелет конечностей характеризуется как добавочный скелет, skeleton appendiculare. К общим закономерностям его строения относятся многозвенность, расчлененность на лучи и билатеральная симметрия. Многозвенность конечностей выражается в том, что каждая конечность состоит из нескольких более или менее подвижно связанных между собой звеньев, имеющих различное строение. Различают пояс конечности и свободную конечность. Пояс представляет соединительное звено между свободной конечностью и скелетом туловища. Свободная конечность подразделяется на проксимальную, среднюю и дистальную части. Проксимальная часть представлена в верхней конечности плечом, в нижней конечности - бедром; средняя часть – соответственно предплечьем и голенью; дистальная часть - кистью и стопой. Последние, в свою очередь, подразделяются на три отдела каждая. Проксимальный отдел составляет в кисти запястье, в стопе - предплюсна. Средняя часть представлена в кисти пястью, в стопе - плюсной. Дистальный отдел образуют пальцы. Эта часть конечности также подразделяется на 3 звена, представленные проксимальной, средней и дистальной фалангами. Количество костных элементов в звеньях конечностей увеличивается в дистальном направлении. Проксимальное звено содержит одну кость (плечевую или бедренную), среднее звено включает две кости (лучевую и локтевую в предплечье, большеберцовую и малоберцовую в голени). Наличие в среднем звене конечности двух параллельно расположенных, скрепленных между собой костных балок создает более надежную конструкцию, которая передает давление с одной части конечности на другую. Подвижное соединение костей предплечья позволяет производить вращение кисти, которое играет важную роль в установке руки при различных рабочих движениях. Кости голени, человека утратили взаимную подвижность и выполняют в основном опорную функцию. Расчлененность на лучи характерна для дистальных звеньев конечностей, которые у наземных позвоночных имеют пятилучевое строение. Эта исходная форма может видоизменяться в связи со специализацией животного. Например, у непарнокопытных (лошади) редуцируются крайние лучи и остается сильно развитый средний палец. Немецкий анатом К.Гегенбаур считал, что в пятилучевой кисти и стопе выражен лучистый тип строения плавников, из которых они произошли. В первоначальной закладке запястья и предплюсны имеется по 10 костных элементов, которые располагаются двумя дугообразными рядами. Проксимальный ряд содержит 3, а дистальный 5 костей. Между обоими рядами находятся два центральных элемента. У человека число костей в запястье и предплюсне уменьшилось, в частности в кисти исчезли самостоятельные центральные кости, а в стопе они слились в единую ладьевидную кость. Благодаря расчлененности на лучи и наличию множества мелких костных элементов увеличивается опорная поверхность дистальных частей конечностей и обеспечивается адаптивное изменение формы стопы при ходьбе и формы кисти при манипулировании с различными предметами, Исходя из взаимного расположения звеньев скелета, можно установить гомологию, соответствие костей верхних и нижних конечностей человека. Поскольку большой палец кисти находится на стороне лучевой кости, а большой палец стопы - на стороне большеберцовой кости, эти две кости нужно считать гомологичными. Отсюда следует, что гомологом локтевой кости является малоберцовая. Исходи из этого, можно проследить соответствие между костями запястья и предплюсны. Симметрия конечностей носит билатеральный характер. Левая рука и нога представляют зеркальное отражение правых конечностей. Однако симметрия здесь, как и повсюду в человеческом теле, носит приблизительный характер. Отклонения от симметрии выражаются в неодинаковом развитии костей с обеих сторон: у большинства людей плечевая кость и кости предплечья справа имеют несколько большую длину, ширину диафизов и массу. Диссимметрия костей предплечья начинает проявляться уже во внутриутробном периоде и усиливается в постнатальной жизни, особенно в школьном возрасте. В нижних конечностях также наблюдается диссимметрия костей, усиливающаяся с возрастом. Симметричные бедренные кости встречаются только до 20 лет; позже все парные кости различаются по каким-либо признакам. Направленность диссимметрии у костей нижних конечностей выражена не так отчетливо, как в верхних конечностях. У значительной части людей отмечается преобладающее развитие в длину левой ноги и входящих в ее состав длинных костей. Так как это часто сочетается с более сильным развитием костей правой руки, то говорят о перекрестной асимметрии конечностей. Перекрестная асимметрия является особенностью человека. У обезьян диссимметрия конечностей выражена слабо и не отмечается преобладания в развитии скелета одной из конечностей. В скелете конечностей человека мы находим ряд существенных отличий от антропоидов. В верхней конечности относительно удлинена плечевая кость и укорочены кости предплечья и пальцев. Характерна для человека сильная скрученность диафиза плечевой кости, которая компенсирует поворот головки кости в медиальную сторону соответственно положению лопатки на задней стороне грудной клетки. В кисти отмечается более сильное развитие I и II лучей; большой и указательный пальцы играют у человека особенно большую роль в тонких движениях кисти. Радиализацию кисти следует рассматривать как одно из приспособлений к трудовой деятельности. Нижние конечности человека отличаются мощным развитием, большой длиной, выпрямленностью в коленных суставах. Их особенности обусловлены, прежде всего, приспособлением к вертикальному положению тела. Таз человека шире и короче, чем у антропоидов. Полость таза более объемиста, ее поперечный размер преобладает над сагиттальным, тогда как у обезьян отношение обратное. В процессе антропогенеза произошел поворот осей таза; крестец отклонился назад, а крылья подвздошных костей сместились вперед, вследствие чего изменилось положение таза по отношению к позвоночнику. Таз человека обладает резко выраженными половыми различиями, которые почти не заметны у животных. Бедренная кость человека является самой длинной в скелете, на нее приходится почти четверть длины тела. От бедренной кости зависят в наибольшей степени индивидуальные различия роста тела. Характерным является поворот диафиза бедренной кости и ее дистального конца внутрь и поворот большеберцовой кости наружу, что играет важную роль в механизме ходьбы. Стопа человека представляет специализированную опорную конструкцию. Стопа является самой специфической частью человеческих конечностей. В отличие от обезьян у человека она имеет мощно развитый проксимальный отдел, представленный пяточной и таранной костями. В то же время пальцы стопы укорочены. В процессе гоминизации произошло усиление I луча («тибиализация» стопы) и редукция латеральных пальцев, особенно мизинца, в котором часто наблюдается слияние средней и дистальной фаланг. Наряду с продольной сводчатостью стопа приобрела поперечную сводчатость. Стопа человека пронирована и представляет в целом скрученную пластинку, которая опирается сзади на пяточный бугор, спереди - на головки плюсневых костей. Архитектура губчатого вещества стопы определяется тем, что от нижнего конца большеберцовой кости идут две системы линий напряжения, проходящие через таранную кость. Одна из них направляется к пяточному бугру, другая идет к вогнутости стопы до головок плюсневых костей. Эти траектории проходят перпендикулярно суставным поверхностям и не прерываются суставами. В пяточной кости имеются перекрещивающиеся системы костных балок, которые проходят в тыльном и подошвенном направлениях. В укреплении свода стопы играют большую роль ее мощный связочный аппарат, особенно длинная подошвенная связка и подошвенный апоневроз. Последний связывает оба конца свода стопы и не дает им разойтись. Существует два вида мускулатуры: гладкая (непроизвольная) и поперечно-полосатая (произвольная). Гладкие мышцы расположены в стенках кровеносных сосудов и некоторых внутренних органов. Они сужают и расширяют сосуды, продвигают пищу по желудочно-кишечному тракту, сокращают стенки мочевого пузыря. Поперечно-полосатая мышцы – это все скелетные мышцы, к ним относятся также и сердечная мышца. Основа мышц – белки, составляющие 80-85 мышечной ткани. Главное свойство мышечной ткани – сократимость. Мышцы делятся на длинные, короткие и широкие. Мышечная ткань. Для осуществления различных движений в организме человека, как и у всех позвоночных животных, имеются 3 вида мышечной ткани: скелетная, сердечная и гладкая. Каждому виду ткани свойствен свой тип видоизмененных клеток - мышечных волокон. Скелетные мышцы образованы поперечнополосатой мышечной тканью, мышечные волокна которой собраны в пучки. Внутри волокон проходят белковые нити, благодаря которым мышцы способны укорачиваться - сокращаться. Сердечная мышца, как и скелетная, состоит из поперечнополосатых мышечных волокон. Эти волокна в определенных участках как бы сливаются (переплетаются). Благодаря этой особенности сердечная мышца способна быстро сокращаться. Стенки внутренних органов (сосудов, кишечника, мочевого пузыря) образованы гладкой мышечной тканью. Сокращение волокон этой ткани происходит медленно. Строение мышцы. Скелетные мышцы состоят из пучков по перечнополосатых мышечных волокон. К каждой мышце подходят кровеносные сосуды и нервы. Мышцы покрыты соединительнотканной оболочкой и прикрепляются к кости при помощи сухожилий. Роль нервной системы в регуляции деятельности мышц. К скелетным мышцам подходят нервы, содержащие чувствительные и двигательные нейроны. По чувствительным нейронам передаются импульсы от рецепторов кожи, мышц, сухожилий, суставов в центральную нервную систему. По двигательным нейронам проводятся импульсы от спинного мозга к мышце, в результате чего мышца сокращается. Таким образом, сокращения мышц в организме совершаются рефлекторно. В то же время на двигательные нейроны спинного мозга влияют импульсы из головного мозга, в частности из коры больших полушарий. Это делает движения произвольными. Сокращаясь, мышцы приводят в движение части тела, обусловливают перемещение организма или поддержание определенной позы. Согласованная работа мышц сгибателей и разгибателей. В выполнении человеком любого движения принимают участие две группы противоположно действующих мышц: сгибатели и разгибатели суставов. Сгибание в суставе осуществляется при сокращении мышц-сгибателей и одновременном расслаблении мышц-разгибателей. Согласованная деятельность мышц-сгибателей и мышц-разгибателей возможна благодаря чередованию процессов возбуждения и торможения в спинном мозге. Например, сокращение мышц-сгибателей руки вызвано возбуждением двигательных нейронов спинного мозга. Одновременно расслабляются мышцы-разгибатели. Это связано с торможением двигательных нейронов. Мышцы-сгибатели и разгибатели сустава могут одновременно находиться в расслабленном состоянии. Так, мышцы свободно висящей вдоль тела руки находятся в состоянии расслабления. При удержании гири или гантели в горизонтально вытянутой руке наблюдается одновременное сокращение мышц-сгибателей и разгибателей сустава. Сокращаясь, мышца действует на кость как на рычаг и производит механическую работу. Любое мышечное сокращение связано с расходом энергии. Источниками этой энергии служат распад и окисление органических веществ (углеводов, жиров, нуклеиновых кислот). Органические вещества в мышечных волокнах подвергаются химическим превращениям, в которых участвует кислород. В результате образуются продукты расщепления, главным образом углекислый газ и вода, и освобождается энергия. Протекающая через мышцы кровь постоянно снабжает их питательными веществами и кислородом и уносит из них углекислый газ и другие продукты распада. Утомление при мышечной работе. При длительной физической работе без отдыха постепенно уменьшается работоспособность мышц. Временное снижение работоспособности, наступающее по мере выполнения работы, называют утомлением. После отдыха работоспособность мышц восстанавливается. При выполнении ритмических физических упражнений утомление наступает позднее, так как в промежутках между сокращениями работоспособность мышц частично восстанавливается. В то же время при большом ритме сокращений скорее развивается утомление. Работоспособность мышц зависит и от величины нагрузки: чем больше нагрузка, тем скорее развивается утомление. Утомление мышц и влияние на их работоспособность ритма сокращений и величины нагрузки изучал русский физиолог И.М. Сеченов. Он выяснил, что при выполнении физической работы очень важно подобрать средние величины ритма и нагрузки. При этом производительность будет высокой, а утомление наступает позже. Распространено мнение, что лучший способ восстановления работоспособности - это полный покой. И.М. Сеченов доказал ошибочность такого представления. Он сравнивал, как восстанавливается работоспособность в условиях полного пассивного отдыха и при смене одного вида деятельности другим, т.е. в условиях активного отдыха. Оказалось, что утомление проходит скорее и работоспособность восстанавливается раньше при активном отдыхе. Кровь – жидкая ткань, циркулирующая в кровеносной системе, обеспечивающая жизнедеятельность клеток тканей организма и выполнение ими различных физиологических функций. Кровь состоит из плазмы и взвешенных в ней форменных элементов: красных кровяных телец (лейкоцитов), кровяных пластинок (тромбоцитов). В 1мл крови в норме содержится 4, 5-5 млн. эритроцитов, 6-8 тыс. лейкоцитов, 200-300 тыс. тромбоцитов. Эритроциты – клетки, имеющие форму круглой пластинки диаметром 8 и толщиной 2-3мк. Они почти полностью заполнены особым белком, - гемоглобином, который и придает крови красный цвет. Гемоглобин способен давать нестойкое соединение с кислородом (оксигемоглобин, имеющий яркий алый цвет), что позволяет крови транспортировать кислород из легких к тканям тела. Малый размер эритроцитов позволяет им проходить по тончайшим кровеносным сосудам – капиллярам. Эритроциты участвуют в переносе углекислого газа из тканей в легкие. Лейкоциты выполняют преимущественно защитную функцию. Они могут выходить из кровяного русла непосредственно в ткани тела в пораженном его участке и так (как и в крови) уничтожать инородные для организма белки, в том числе болезнетворные микробы. Это явление называется фагоцитоз. Тромбоциты значительно меньше эритроцитов. Они играют важную роль в сложном процессе свертывания крови. В плазме крови растворены гормоны, минеральные соли, питательные и другие вещества, которыми она снабжает ткани, а также содержатся продукты распада, удаленные из тканей. В плазме крови находятся и антитела, создающие иммунитет организма против соответствующих ядовитых веществ (инфекционного или какого-нибудь инородного происхождения), микроорганизмов и вирусов. Плазма крови транспортирует к легким углекислый газ – один из конечных продуктов окислительных реакций в тканях тела. Постоянство состава крови поддерживается как химическими механизмами самой крови, так и специальными регуляторными механизмами нервной системы. При движении крови по капиллярам, пронизывающим все ткани, через их полупроницаемые стенки постоянно просачиваются в межтканевое пространство некоторые части кровяной плазмы, которые образуют межтканевую жидкость, окружающую все клетки тела. Из этой жидкости клетки поглощают питательные вещества и кислород и выделяют в нее углекислый газ и другие конечные продукты распада, образующиеся в процессе обмена веществ. Таким образом, кровь непрерывно отдает в межтканевую жидкость питательные вещества, используемые клетками, и поглощают вещества, выделяемые ими. Здесь же между клетками начинаются мельчайшие лимфатические сосуды. Некоторые вещества межтканевой жидкости просачиваются в эти сосуды и образуют лимфу, которая выполняет следующие функции: возвращает белки из межтканевого пространства в кровь, участвует в перераспределении жидкости в организме, доставляет жиры к клеткам тканей, поддерживает нормальное протекание процессов обмена веществ в тканях, уничтожает и удаляет из организма болезнетворные микроорганизмы. Лимфа по лимфатическим сосудам возвращается в кровь, в венозную часть сосудистой системы. Количество крови составляет 7-8% от веса тела. Например, в организме человека весом 70 кг содержится 5-6 л крови. В покое 40-50% крови выключается из кровообращения и находится в «кровяных депо» в печени, селезенке, в сосудах кожи, мышц, легких. В случае необходимости (например, при мышечной работе) запасной объем крови включается в кровообращение. Наибольший объем крови рефлекторно направляется к работающему органу. Выход крови из «депо» и ее перераспределение к органу регулируется центральной нервной системой. Кровь, циркулирующая в кровеносной системе, выполняет следующие основные функции: трофическую, т.е. функцию питания тканей, переносит кислород, питательные вещества; регуляторную – переносит гормоны и другие вещества, изменяющие «настройку» отдельных органов и целых систем; воздействует своим гидростатическим давлением на определенные чувствующие нервные окончания; теплообмена – охлаждает работающие мышцы и другие перегретые ткани и нагревает недостаточно теплые ткани; защитную – борется с инородными телами и ядовитыми веществами; закупоривает места повреждения тела. Потеря человеком более 1/3 количества крови опасна для жизни. В то же время уменьшение количества крови на 200-400 мл для здоровья людей безвредно и даже стимулирует процессы кроветворения. У людей различают четыре группы крови. При спасении жизни людей, потерявших много крови, или при некоторых заболеваниях делают переливание крови с учетом группы. Каждый человек должен знать свою группу крови. Регулярные занятия физическими упражнениями и спортом способствуют увеличению количества гемоглобина в эритроцитах и количества эритроцитов в крови, что повышает кислородную емкость крови. У человека, тренированного к физическим нагрузкам, повышается сопротивляемость организма к простудным и инфекционным заболеваниям, ускоряются процессы восстановления после значительной потере крови. Кровь в организме под воздействием работы сердца находится в постоянном движении, которое называется кровообращением. Кровообращение осуществляется по кровеносным сосудам под воздействием разности давления в артериях и венах. Артерии – кровеносные сосуды, по которым кровь движется от сердца. Они имеют плотные упругие мышечные стенки. От сердца отходят крупные артерии (аорта, легочная артерия), которые, удаляясь от него, ветвятся на более мелкие. Самые мелкие артерии разветвляются на микроскопические сосуды – капилляры, пронизывающие весь организм. Их толщина в 10 – 15 раз тоньше человеческого волоса, и они густо пронизывают все ткани тела. Например, в 1 см2 работающей скелетной мышцы действует около 3000 капилляров. Если все капилляры человека уложить в одну линию, то ее длина составит 100000 км. Капилляры имеют тонкие полупроницаемые стенки, через которые во всех тканях организма осуществляется обмен веществ. Из капилляров кровь переходит в вены - сосуды, по которым она движется к сердцу. Вены имеют тонкие и мягкие стенки и клапаны, которые пропускают кровь только в сторону сердца.
Функциональная активность предполагает оптимальное количество движений в режиме дня, которые включают деятельность всех органов и систем организма человека. Наблюдения показывают, что к 70 годам мускулатура человека, ведущего малоподвижный образ жизни, может приводить к ожирению. От атрофии страдает нервная ткань, мозг. Это, в частности, связано с недостаточной функциональной активностью пожилых людей. У них отмечаются атрофические явления в коре больших полушарий, что сопровождается и функциональными нарушениями. Явления преждевременной атрофии вызваны прежде всего снижением двигательной активности, отсутствием функциональной нагрузки. Ткани работающего и утомленного организма жадно поглощают из крови необходимые ему кислород, питательные вещества и соли, компенсируя с их помощью утраченные пластические материалы и энергию. Если нагрузки были оптимальные, то организм не ограничивается после окончания работы восстановлением физиологических процессов до исходного уровня, в нем происходит процесс сверхвосстановления. Сверхвосстановление происходит на вершине цикла самообновления, в так называемой фазе экзальтации. Фаза экзальтации возникает после периода восстановления и характеризуется дальнейшим совершенствованием структуры и функции работающего органа. В этот период органы и весь организм в целом в состоянии работать интенсивнее более длительное время. Обнаружено, что в фазе экзальтации в мышце содержится больше, чем прежде, гликогена, белковых и других веществ. Мышца накапливает больше, чем до работы, важного энергетического соединения – аденозинтрифосфорной кислоты (АТФ). Если рабочая возбуждающая нагрузка через определенный период не повторяется, то фаза повышенной работоспособности постепенно проходит, характерные для нее процессы сверхвосстановления полностью прекращаются. Иное дело, если функциональная нагрузка повторяется систематически. Спустя некоторое время повышенный уровень выработки пластических материалов, освоенный в фазе экзальтации, становится постоянным и исходным для дальнейшего роста работоспособности. Упражняемый орган увеличивает свою массу и достигает более высокого структурного и функционального совершенства. Обновленная ткань лучше приспосабливается к новым раздражителям. Ткань, орган, целостный организм адекватно реагируют на любые изменения внешней среды, приспосабливаются к ним быстрее и с меньшими затратами энергии, медленнее и менее глубоко утомляются. Только тренировка, постоянная и не уменьшающаяся в объеме, вместе со сбалансированным питанием обуславливает эффективность самообновления и совершенствования, обеспечивает единство процессов усвоения и распада – оптимальный уровень обмена веществ. К увяданию жизненно важных внутренних органов ведет не только полная, но даже частичная обездвиженность. Это доказал советский ученый П. Гордиенко. Он накладывал полную гипсовую повязку на заднюю лапку кролика. От выключения мышечных групп у подопытного животного страдали печень, почки, селезенка и даже сердце. Следует учесть, что кролик не мог сгибать только одну лапу. Но и этого оказалось вполне достаточно, чтобы через 120 дней сердце кролика уменьшилось почти в два раза. Эксперимент П. Гордиенко и другие исследования очень важны, они показали неблагоприятное влияние гиподинамии (пониженной двигательной активности) на сердечно-сосудистую систему любого живого организма, в том числе и человека. От недостаточной физической нагрузки сердце человека слабеет, ухудшается функция механизмов сосудистой регуляции. Одновременно сердечно-сосудистая система хуже приспосабливается к физической работе, к изменению положения тела в пространстве. Гиподинамия приводит к тому, что в условиях функциональной нагрузки снижается снабжение кислородом сердечной мышцы – миокарда. В норме повышенная потребность сердечной мышцы в кислороде компенсируется быстрым расширением коронарных сосудов. Если же эти сосуды к этому функционально не подготовлены, то даже умеренная нагрузка оказывается непосильной для мышцы сердца, плохо обеспеченной кислородом. Поэтому для нетренированного человека опасны не только значительные физические нагрузки, но даже эмоциональное напряжение (стресс). Любая неблагоприятная обстановка, требующая возрастания активности сердца грозит для нетренированного человека нарушением обмена веществ в его сердечной мышце. Учитывать это особенно важно: причина инфарктов миокарда в 70-80 случаев – незащищенность нетренированного сердца при воздействии эмоциональных и других функциональных нагрузок. Наконец, гиподинамия отрицательно сказывается и на функции нервной системы, в частности коры больших полушарий головного мозга. Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 849; Нарушение авторского права страницы