Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Западная и восточная средневековая наука.



Варварские нашествия охватили всю Евразию, и был лишь один город, который сумел выстоять в этой буре, это была последняя крепость цивилизации – Константинополь. В середине IX века под началом епископа Льва Математика в Магнавском дворце была вновь открыта высшая школа - началось возрождение древних наук и искусств. Преподаватели Магнавской школы стали собирать хранившиеся в монастырях старинные книги; знаменитый грамматик Фотий составил сборник с краткими пересказами 280 античных рукописей. Придворные грамматики собрали огромную библиотеку и участвовали в создании обширных компиляций по законоведению, истории и агрономии. Греки снова познакомились с Платоном, Аристотелем, Евклидом и снова узнали о шарообразности Земли. В Греции сохранялись и созданные римлянами принципы строительного искусства

В начале VIII века приглашенные халифом греческие мастера возвели в Иерусалиме главную мечеть арабов – «Купол Скалы», Куббат ас-Сахра; эта мечеть и по сей день остается шедевром архитектуры. Правивший в IX веке халиф Мамун был большим почитателем греческой учености; под впечатлением легенд об александрийском Мусее он создал в Багдаде “Дом науки” с обсерваторией и большой библиотекой; здесь были собраны поэты, учёные и толмачи, которые переводили греческие книги. Рассказывают, что халиф платил за переводы столько золота, сколько весила книга; были переведены сотни рукописей, присланных из Константинополя или найденных в сирийских монастырях; мусульманский мир познакомился с трудами Платона, Аристотеля, Евклида. Из книги Клавдия Птолемея (которую арабы называли «Аль-Магест») мусульмане узнали о шарообразности земли, научились определять широту и рисовать карты. Сочинения Гиппократа стали основой для “Канона врачебной науки” знаменитого врача и философа Ибн Сины; Ибн Хайан положил начало арабской алхимии и астрологии. Самым знаменитым арабским астрономом был ал-Хорезми, известный европейским переводчикам как Алгорисмус - от его имени происходит слово “алгоритм”. Ал-Хорезми позаимствовал у индийцев десятичные цифры, которые потом попали от арабов в Европу и которые европейцы называют арабскими.

Постепенно науки возвращались и в Европу. Искорки древних знаний издавна сохранялись в монастырях, где монахи переписывали старые книги и учили молодых послушников латинской грамоте, чтобы они могли читать святую Библию. В те времена латынь была единственным письменным языком и, чтобы научиться грамоте, нужно было научиться латыни: сначала выучить наизусть полсотни псалмов, а потом освоить азбуку. Кроме того, в монастырской школе учили церковному пению и немного - счёту, в этом и заключалось тогдашнее образование. С давних времён учёные монахи пытались собрать в одну книгу всё, что осталось от древних знаний и составляли обширные манускрипты, повествующие о житиях святых, магических свойствах чисел и немного - о медицине или географии. В VII веке Исидор Севильский написал двадцать томов “Этимологии”, а столетием позже Беда Достопочтенный составил обширную “Церковную историю Англии”.

Мусульманская Испания была для европейцев ближе, чем Константинополь, поэтому они ездили в Испанию, где учились у арабов тому, что те позаимствовали у греков. После того, как христиане отвоевали у мусульман столицу Испании Толедо, им достались богатые библиотеки с сотнями написанных арабской вязью книг. Епископ Раймунду призвал учёных монахов со всей Европы, и они вместе с арабскими и еврейскими мудрецами перевели эти книги - среди них был медицинский трактат Ибн Сины (Авиценны), философские манускрипты Ибн Рушда (Авероэсса), алхимические штудии Ибн Хайана (Гебера), а также арабские переводы Платона, Аристотеля, Евклида, Птолемея. В Испании европейцы познакомились с бумагой, магнитной иглой, механическими часами, перегонным кубом для получения алкоголя.

В конце XI века болонский ритор Ирнерий восстановил римский кодекс законов и основал первую юридическую школу. Со временем эта школа разрослась, в Болонью стали приезжать тысячи учащихся со всей Европы, и в конце XII века школа Ирнерия превратилась в “университет” - учёную “корпорацию”, цех с мастерами-магистрами, подмастерьями-бакалаврами и учениками-студентами. В университете было четыре факультета, один из них, “артистический”, считался подготовительным: это была прежняя “общая школа”, где изучали “семь свободных искусств”. Лишь немногие студенты выдерживали все испытания и продолжали учёбу на старших факультетах - юридическом, медицинском и богословском. Юристы и медики учились пять лет, а богословы - пятнадцать; их было совсем мало, и по большей части это были монахи, посвятившие свою жизнь богу. Появление университета принесло Болонье почёт и немалые выгоды, поэтому вскоре и другие города принялись заводить высшие школы по болонскому образцу. В середине XIII века в Италии было 8 университетов. Самым знаменитым университетом Англии был университет в Оксфорде, где в XIII веке преподавал знаменитый астролог и алхимик Роджер Бэкон.

 

13. Становление эксперимен­тального метода и его соединение с математическим описанием приро­ды: Г. Галилей, Ф. Бэкон, Р. Декарт.

Возрождение коснулось и астрономии, в 1543 году учившийся в Италии польский священник Николай Коперник издал книгу, в которой он воскресил идею Аристарха Самосского о том, что Земля вращается вокруг Солнца. Однако, как и в древние времена, эта теория не согласовывалась с наблюдениями астрономов, в частности с наблюдениями датского астронома Тихо Браге, создавшего обширные и точные астрономические таблицы. В 1609 году Иоганн Кеплер, астроном и астролог при дворе германского императора, проанализировал таблицы Тихо Браге и путем кропотливых вычислений показал, что Земля вращается вокруг Солнца – но не по кругу, а по эллипсу. Таким образом, ученые Нового времени впервые превзошли ученых Древнего мира.

Экспериментальное подтверждение теории Кеплера было дано великим итальянским ученым Галилео Галилеем. С давних времен основным возражением против гелиоцентрической теории было то, что Луна вращается вокруг Земли – по аналогии считали, что и другие небесные тела должны вращаться вокруг Земли. В 1609 году Галилей одним из первых создал подзорную трубу и с ее помощь сделал много сенсационных для того времени открытий. Он обнаружил много новых звезд и открыл четыре спутника, вращающиеся вокруг Юпитера, - теперь стало ясно, что Луна – это не планета, а спутник, подобный спутникам Юпитера, а планеты, в отличие от спутников, вращаются вокруг Солнца. Он установил, что Аристотель был не прав, утверждая, что тяжелые тела падают быстрее легких, что пушечное ядро летит по параболе и что время колебания маятника не зависит от амплитуды. Галилей открыл закон инерции, закон равноускоренного движения и установил принцип сложения (суперпозиции) движений. Эти открытия стали началом современной механики.

Опыты Галилея продолжал его ученик Торричелли (1608-1647), открывший вакуум, атмосферное давление и создавший первый барометр. Исследование вакуума заинтересовало ученых многих стран. Француз Блез Паскаль совершил с этим барометром восхождение на одну из гор и обнаружил, что по мере подъема атмосферное давление падает. Немец Отто Гернике и англичанин Роберт Бойль почти одновременно изобрели воздушный насос. Бойль также установил, что объем, занимаемый газом, обратно пропорционален давлению (известный закон Бойля-Мариотта). Начатое Галилеем исследование маятника было продолжено голландцем Христианом Гюйгенсом (1629-95), который в 1657 году создал первые маятниковые часы.

По мере развития науки решалась проблема правильного обоснования научных истин и теорем. Английский философ Фрэнсис Бэкон в сочинении «Новый Органон» (1620) дал определение индуктивного и дедуктивного методов доказательства. Французский философ Рене Декарт (1596-1650) ввел в новую науку правила математического доказательства; он настаивал на необходимости доказательства любого утверждения. Когда у Декарта попросили доказать, что он существует, он ответил: «Я мыслю – следовательно, я существую». Декарт первый стал изображать кривые в виде графиков функций и создал аналитическую геометрию, он ввел понятие «количество движения» (это произведение массы на скорость – mv) и установил закон сохранения количества движения в отсутствие внешних сил.

Идеи Декарта были восприняты Исааком Ньютоном (1643-1727). Величайшим открытием Ньютона был его «второй закон механики», утверждавший, что «изменение количества движения пропорционально приложенной силе». «Изменение количества движения» – это масса, умноженная на производную скорости, таким образом, второй закон давал начало дифференциальному исчислению. Другим великим открытием Ньютона был закон всемирного тяготения, при доказательстве этого Ньютон использовал формулу центробежной силы, полученную ранее Гюйгенсом.

Честь создания дифференциального исчисления оспаривал у Ньютона знаменитый немецкий ученый Готфрид Лейбниц (1646-1716). Лейбниц, в частности, установил закон сохранения кинетической энергии. Работы Лейбница и Ньютона в области механики и дифференциального исчисления продолжал швейцарский ученый Иоганн Бернулли (1667-1748).

В 1666 году знаменитый министр Людовика XIV Жан-Батист Кольбер уговорил короля отпустить средства на создание Французской Академии наук. Это было восстановление традиций Александрийского Мусея, в Академии были созданы обсерватория, библиотека и исследовательские лаборатории, выпускался научный журнал. Академикам платили большое жалование; в числе академиков были такие знаменитости как Гюйгенс и Лейбниц. Кольбер ставил перед Академией практические задачи, под руководством Пикара был точно измерен градус меридиана и составлена точная карта Франции – причем оказалось, что размеры страны меньше, чем полагали прежде. Ученик Гюйгенса Дени Папен был создателем парового цилиндра и работал над созданием паровой машины.

По примеру Людовика XIV своими Академиями поспешили обзавестись многие европейские короли. В 1710 году по инициативе Лейбница была создана Берлинская академия. В 1724 году, незадолго до смерти, Петр I подписал указ о создании Российской академии наук. Главной знаменитостью Российской академии был ученик Бернулли знаменитый математик швейцарец Леонард Эйлер. Эйлер продолжал разработку теории дифференциальных уравнений, начатую в работах Лейбница и Бернулли. Теория дифференциальных уравнений была величайшим открытием XVIII века; оказалось что все процессы связанные с движением тел, описываются дифференциальными уравнениями, и решив их, можно найти траекторию движения. В 1758 году французский математик и астроном Клеро рассчитал траекторию кометы Галлея с учетом влияния притяжения Юпитера и Сатурна – это была блестящая демонстрация возможностей новой теории. Эта теория нашла свое завершение в знаменитой книге Жозефа Лагранжа «Аналитическая механика», увидевшей свет в Париже в 1788 году.

 

14. Возник­новение дисциплинарно организованной науки и ее технологическое применение. Формирование технических наук.

Изобретатели машин, произведших промышленную революцию (XVIII век), не были учеными, это были мастера-самоучки. Некоторые из них были неграмотны; к примеру, Стефенсон научился читать в 18 лет. В период промышленного переворота наука и техника развивались независимо друг от друга. В особенности это касалось математики, в это время появился векторный анализ, французский математик О. Коши создал теорию функций комплексного переменного, а англичанин У. Гамильтон и немец Г. Грасман создали векторную алгебру. В работах Лапласа, Лежандра и Пуассона была разработана теория вероятностей. Основные достижения физики были связаны с исследованием электричества и магнетизма. На рубеже XVIII-XIX веков итальянский физик Вольта создал гальваническую батарею; такого рода батареи долгое время были единственным источником электрического тока и необходимым элементом всех опытов. В 1820 году датский физик Г. Эрстед обнаружил, что электрический ток воздействует на магнитную стрелку, затем француз А. Ампер установил, что вокруг проводника появляется магнитное поле и между двумя проводниками возникают силы притяжения или отталкивания. В 1831 году Майкл Фарадей открыл явление электромагнитной индукции. Это явление состоит в том, что если замкнутый проводник при своем перемещении пересекает магнитные силовые линии, то в нем возбуждается электрический ток. В 1833 году работавший в России немецкий ученый Эмилий Ленц создал общую теорию электромагнитной индукции. В 1841 году Джоуль исследовал эффект выделения теплоты при прохождении электрического тока. В 1865 году выдающийся английский ученый Джеймс Максвелл создал теорию электромагнитного поля.

Теория электромагнетизма стала первой областью, где научные разработки стали непосредственно внедряться в технику. В 1832 году русский подданный барон П. В. Шиллинг продемонстрировал первый образец электрического телеграфа. В приборе Шиллинга импульсы электрического тока вызывали отклонение стрелки, соответствующее определенной букве. В 1837 году американец Морзе создал усовершенствованный телеграф, в котором передаваемые сообщения отмечались на бумажной ленте с помощью специальной азбуки.

В 1753 г. К. Линнеем разработаны принципы систематики и бинарная номенклатура. В начале XIX века в биологии были сделаны революционные открытия: сформулирована первая теория эволюции органической природы Ж.-Б. Ламарка (1809 г.), сформулирована клеточная теория Т. Шванном и М. Шлейденом (1839 г.). В 1859 г. опубликована книга Ч. Дарвина «Происхождение видов путём естественного отбора», созданна эволюционная теория. В 1865 г. Опубликованы законы наследственности Г. Менделя.

В конце XVIII века родилась новая наука, химия. Прежде алхимики считали что все вещества состоят из четырех элементов огня, воздуха, воды и земли. В 1789 году Антуан Лавуазье экспериментально доказал закон сохранения вещества. Затем Джон Дальтон предложил атомистическую теорию строения вещества; он утверждал, что атомы различных веществ обладают различным весом и что химические соединения образуются сочетанием атомов в определенных численных соотношениях. В 1809 году был открыт закон кратных объемов при химическом взаимодействии газов. Это явление было объяснено Дальтоном и Гей-Люссаком как свидетельство того, что в равных объемах газа содержится одинаковое количество молекул. Позднее Авогадро выдвинул гипотезу, что в определенном объеме (скажем, кубометре) любого газа содержится одинаковое количество молекул; эта гипотеза была экспериментально подтверждена в 40-х годах французским химиком Ш. Жераром. В 1852 году английский химик Э. Фрэнкленд ввел понятие валентности, то есть числового выражения свойств атомов различных элементов вступать в химические соединения друг с другом. В 1869 году Д. И. Менделеев создал периодическую систему элементов.

Химическая промышленность в первой половине XIX века производила в основном серную кислоту, соду и хлор. В 1785 году Клод Бертолле предложил отбеливать ткани хлорной известью. В 1842 году русский химик Николай Зинин синтезировал первый искусственный краситель, анилин. В 50-х годах немецкий химик А. Гофман и его ученик У. Перкин получили два других анилиновых красителя, розанелин и мовеин. В результате этих работ стало возможным создание анилинокрасочной промышленности, получившей быстрое развитие в Германии. Другой важной отраслью химической промышленности было производство взрывчатых веществ. В 1845 году швейцарец Щенбейн изобрел пироксилин, а итальянец Сабреро – нитроглицерин. В 1862 году швед Альфред Нобель наладил промышленное производство нитроглицерина, а затем перешел к производству динамита.

В 1840-х годах немецкий химик Юстус Либих обосновал принципы применения минеральных удобрений в сельском хозяйстве. С этого времени началось производство суперфосфатных и калиевых удобрений, Германия стала центром европейской химической промышленности.

В конце XIX столетия наступила «Эпоха электричества». Если первые машины создавались мастерами-самоучками, то теперь наука властно вмешалась в жизнь людей – внедрение электродвигателей было следствием достижений науки. «Эпоха электричества» началась с изобретения динамомашины; генератора постоянного тока, его создал бельгийский инженер Зиновий Грамм в 1870 году. Вследствие принципа обратимости машина Грамма могла работать как в качестве генератора, так и в качестве двигателя; она могла быть легко переделана в генератор переменного тока. В 1880-х годах работавший в Америке на фирме «Вестингауз электрик» югослав Никола Тесла создал двухфазный электродвигатель переменного тока.

Электростанции требовали двигателей очень большой мощности; эта проблема была решена созданием паровых турбин. Появились также гидроэлектростанции, на которых использовались гидротурбины, созданные в 30-х годах французским инженером Бенуа Фурнероном. Гидротурбины имели очень высокий КПД, порядка 80%, и получаемая на гидростанциях энергия была очень дешевой.

Первый работоспособный бензиновый двигатель был создан в 1883 году немецким инженером Юлиусом Даймлером. Этот двигатель открыл эру автомобилей; уже в 1886 году Даймлер поставил свой двигатель на четырехколесный экипаж. КПД двигателя Даймлера составлял около 20%, КПД паровых машин не превосходил 13%. Между тем согласно теории тепловых двигателей, разработанной французским физиком Карно, к. п. д. идеального двигателя мог достигать 80%. Идея идеального двигателя волновала умы многих изобретателей, в начале 90-х годов ее попытался воплотить в жизнь молодой немецкий инженер Рудольф Дизель. Дизелю не удалось полностью реализовать свою идею из-за технических трудностей. Тем не менее, первый двигатель Дизеля, появившийся в 1895 году, произвел сенсацию – его КПД составлял 36%, вдвое больше, чем у бензиновых двигателей.

В конце XIX века продолжалась работа над созданием новых средств связи, на смену телеграфу пришли телефон и радиосвязь. В 70-х годах Александер Белл, шотландец скопировал барабанную перепонку, и, поместив металлическую мембрану рядом с электромагнитом, добился удовлетворительной передачи речи на небольшие расстояния. В следующем году Дейвиз Юз изобрел микрофон, а Эдисон применил трансформатор для передачи звука на большие расстояния. В 1877 году была построена первая телефонная станция.

Новый шаг в развитии связи был сделан с изобретением радиотелеграфа. Научной основой радиосвязи была созданная Максвеллом теория электоромагнитных волн. В 1886 году Генрих Герц экспериментально подтвердил существование этих волн с помощью прибора, называемого вибратором. В 1891 году французский физик Бранли обнаружил, что металлические опилки, помещенные в стеклянную трубку, меняют сопротивление под действием электромагнитных волн. Этот прибор получил название когерера. В 1894 году английский физик Лодж использовал когерер, чтобы регистрировать прохождение волн, а в следующем году русский инженер Александр Попов приделал к когереру антенну и приспособил его для принятия сигналов, испускаемых вибратором Герца. В марте 1896 года Попов продемонстрировал свой аппарат и произвел передачу сигналов на расстояние 250 метров.

В конце XIX в. впервые создаются вещества, именуемые те­перь пластмассами. В 1873 г. Дж. Хайеттом был запа­тентован целлулоид — первое из таких веществ, вошедшее в широкий обиход. Перед Первой мировой войной были изобрете­ны бакелит и другие пластмассы, носящие общее название фенопластов. Производство искусственного волокна началось после того, как в 1884 г. французский инженер Г. Шардонё раз­работал метод получения нитрошелка; впоследствии научи­лись производить искусственный шелк из вискозы. В 1899 г. русский ученый И. Л. Кондаков положил начало получению синтетического каучука.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-11; Просмотров: 1125; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.036 с.)
Главная | Случайная страница | Обратная связь