Regression Results for (ConsGOODS)
| Fitted
| Stnd. Error
| Lower 95, 0%
| Upper 95, 0%
| Row
| Value
| CL for Forecast
| CL for Forecast
| CL for Forecast
|
| 1151, 87
| 164, 741
| 824, 531
| 1479, 21
|
| 1154, 85
| 164, 747
| 827, 501
| 1482, 2
|
| 1157, 84
| 164, 753
| 830, 479
| 1485, 2
|
| 1160, 84
| 164, 759
| 833, 464
| 1488, 21
|
| 1163, 84
| 164, 764
| 836, 457
| 1491, 23
|
| 1166, 85
| 164, 77
| 839, 458
| 1494, 25
|
4) N=80
Multiple Regression - (ConsGOODS) (num> 44)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num> 44
|
| Standard
| T
|
| Parameter
| Estimate
| Error
| Statistic
| P-Value
| 1.09^(0.03*num)
| 841, 442
| 15, 2694
| 55, 1066
| 0, 0000
|
Analysis of Variance
Source
| Sum of Squares
| Df
| Mean Square
| F-Ratio
| P-Value
| Model
| 8, 83044E7
|
| 8, 83044E7
| 3036, 74
| 0, 0000
| Residual
| 2, 29722E6
|
| 29078, 7
|
|
| Total
| 9, 06016E7
|
|
|
|
|
R-squared = 97, 4645 percent
R-squared (adjusted for d.f.) = 97, 4645 percent
Standard Error of Est. = 170, 525
Mean absolute error = 134, 175
Durbin-Watson statistic = 0, 0912601
Lag 1 residual autocorrelation = 0, 948629
(ConsGOODS) = 841, 442*1.09^(0.03*num)
Regression Results for (ConsGOODS)
| Fitted
| Stnd. Error
| Lower 95, 0%
| Upper 95, 0%
| Row
| Value
| CL for Forecast
| CL for Forecast
| CL for Forecast
|
| 1162, 45
| 171, 825
| 820, 439
| 1504, 46
|
| 1165, 46
| 171, 831
| 823, 435
| 1507, 48
|
| 1168, 47
| 171, 838
| 826, 439
| 1510, 51
|
| 1171, 5
| 171, 845
| 829, 45
| 1513, 55
|
| 1174, 53
| 171, 852
| 832, 469
| 1516, 59
|
| 1177, 57
| 171, 858
| 835, 496
| 1519, 65
|
5) N=60
Multiple Regression - (ConsGOODS) (num> 64)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num> 64
|
| Standard
| T
|
| Parameter
| Estimate
| Error
| Statistic
| P-Value
| 1.09^(0.03*num)
| 852, 086
| 18, 9632
| 44, 9337
| 0, 0000
|
Analysis of Variance
Source
| Sum of Squares
| Df
| Mean Square
| F-Ratio
| P-Value
| Model
| 7, 12962E7
|
| 7, 12962E7
| 2019, 04
| 0, 0000
| Residual
| 2, 08341E6
|
| 35312, 0
|
|
| Total
| 7, 33796E7
|
|
|
|
|
R-squared = 97, 1608 percent
R-squared (adjusted for d.f.) = 97, 1608 percent
Standard Error of Est. = 187, 915
Mean absolute error = 146, 082
Durbin-Watson statistic = 0, 0880797
Lag 1 residual autocorrelation = 0, 9533
(ConsGOODS) = 852, 086*1.09^(0.03*num)
Regression Results for (ConsGOODS)
| Fitted
| Stnd. Error
| Lower 95, 0%
| Upper 95, 0%
| Row
| Value
| CL for Forecast
| CL for Forecast
| CL for Forecast
|
| 1177, 15
| 189, 732
| 797, 499
| 1556, 81
|
| 1180, 2
| 189, 742
| 800, 528
| 1559, 87
|
| 1183, 26
| 189, 751
| 803, 564
| 1562, 95
|
| 1186, 32
| 189, 76
| 806, 608
| 1566, 03
|
| 1189, 39
| 189, 77
| 809, 66
| 1569, 12
|
| 1192, 47
| 189, 78
| 812, 72
| 1572, 22
|
6) N=40
Multiple Regression - (ConsGOODS) (num> 84)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num> 84
|
| Standard
| T
|
| Parameter
| Estimate
| Error
| Statistic
| P-Value
| 1.09^(0.03*num)
| 790, 103
| 19, 7345
| 40, 0366
| 0, 0000
|
Analysis of Variance
Source
| Sum of Squares
| Df
| Mean Square
| F-Ratio
| P-Value
| Model
| 4, 29402E7
|
| 4, 29402E7
| 1602, 93
| 0, 0000
| Residual
| 1, 04475E6
|
| 26788, 5
|
|
| Total
| 4, 3985E7
|
|
|
|
|
R-squared = 97, 6248 percent
R-squared (adjusted for d.f.) = 97, 6248 percent
Standard Error of Est. = 163, 672
Mean absolute error = 133, 988
Durbin-Watson statistic = 0, 141224
Lag 1 residual autocorrelation = 0, 863244
(ConsGOODS) = 790, 103*1.09^(0.03*num)
Regression Results for (ConsGOODS)
| Fitted
| Stnd. Error
| Lower 95, 0%
| Upper 95, 0%
| Row
| Value
| CL for Forecast
| CL for Forecast
| CL for Forecast
|
| 1091, 52
| 165, 927
| 755, 903
| 1427, 14
|
| 1094, 35
| 165, 939
| 758, 705
| 1429, 99
|
| 1097, 18
| 165, 95
| 761, 514
| 1432, 85
|
| 1100, 02
| 165, 962
| 764, 331
| 1435, 71
|
| 1102, 87
| 165, 974
| 767, 155
| 1438, 58
|
| 1105, 72
| 165, 986
| 769, 986
| 1441, 46
|
7) N=30
Multiple Regression - (ConsGOODS) (num> 94)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num> 94
|
| Standard
| T
|
| Parameter
| Estimate
| Error
| Statistic
| P-Value
| 1.09^(0.03*num)
| 761, 061
| 21, 3113
| 35, 7116
| 0, 0000
|
Analysis of Variance
Source
| Sum of Squares
| Df
| Mean Square
| F-Ratio
| P-Value
| Model
| 3, 06399E7
|
| 3, 06399E7
| 1275, 32
| 0, 0000
| Residual
| 696733,
|
| 24025, 3
|
|
| Total
| 3, 13366E7
|
|
|
|
|
R-squared = 97, 7766 percent
R-squared (adjusted for d.f.) = 97, 7766 percent
Standard Error of Est. = 155, 001
Mean absolute error = 137, 699
Durbin-Watson statistic = 0, 109184
Lag 1 residual autocorrelation = 0, 928375
(ConsGOODS) = 761, 061*1.09^(0.03*num)
Regression Results for (ConsGOODS)
| Fitted
| Stnd. Error
| Lower 95, 0%
| Upper 95, 0%
| Row
| Value
| CL for Forecast
| CL for Forecast
| CL for Forecast
|
| 1051, 4
| 157, 772
| 728, 721
| 1374, 08
|
| 1054, 12
| 157, 786
| 731, 414
| 1376, 83
|
| 1056, 85
| 157, 801
| 734, 113
| 1379, 59
|
| 1059, 59
| 157, 815
| 736, 82
| 1382, 36
|
| 1062, 33
| 157, 83
| 739, 533
| 1385, 13
|
| 1065, 08
| 157, 844
| 742, 253
| 1387, 91
|
8) N=20
Multiple Regression - (ConsGOODS) (num> 104)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num> 104
|
| Standard
| T
|
| Parameter
| Estimate
| Error
| Statistic
| P-Value
| 1.09^(0.03*num)
| 830, 343
| 12, 2457
| 67, 8068
| 0, 0000
|
Analysis of Variance
Source
| Sum of Squares
| Df
| Mean Square
| F-Ratio
| P-Value
| Model
| 2, 49378E7
|
| 2, 49378E7
| 4597, 77
| 0, 0000
| Residual
| 103054,
|
| 5423, 89
|
|
| Total
| 2, 50408E7
|
|
|
|
|
R-squared = 99, 58 percent
R-squared (adjusted for d.f.) = 99, 5885 percent
Standard Error of Est. = 73, 647
Mean absolute error = 52, 5364
Durbin-Watson statistic = 0, 293051
Lag 1 residual autocorrelation = 0, 6808
(ConsGOODS) = 830, 343*1.09^(0.03*num)
Regression Results for (ConsGOODS)
| Fitted
| Stnd. Error
| Lower 95, 0%
| Upper 95, 0%
| Row
| Value
| CL for Forecast
| CL for Forecast
| CL for Forecast
|
| 1147, 11
| 75, 5651
| 988, 954
| 1305, 27
|
| 1150, 08
| 75, 5749
| 991, 903
| 1308, 26
|
| 1153, 06
| 75, 5848
| 994, 86
| 1311, 26
|
| 1156, 05
| 75, 5947
| 997, 824
| 1314, 27
|
| 1159, 04
| 75, 6047
| 1000, 8
| 1317, 28
|
| 1162, 04
| 75, 6147
| 1003, 78
| 1320, 3
|
9) Таблица для расчета прогностических характеристик в зависимости от длины ретроспективного периода
тестовая выборка
| значение показателя
| n (n< =T)
|
|
|
|
|
|
|
|
|
|
| 1156, 66
| 1149, 52
| 1147, 32
| 1144, 09
| 1151, 87
| 1162, 45
| 1177, 2
| 1091, 52
| 1051, 4
| 1147, 11
|
| 1155, 66
| 1152, 49
| 1150, 29
| 1147, 05
| 1154, 85
| 1165, 46
| 1180, 2
| 1094, 35
| 1054, 12
| 1150, 08
|
| 1134, 28
| 1155, 48
| 1153, 27
| 1150, 02
| 1157, 84
| 1168, 47
| 1183, 3
| 1097, 18
| 1056, 85
| 1153, 06
|
| 1104, 87
| 1158, 47
| 1156, 25
|
| 1160, 84
| 1171, 5
| 1186, 3
| 1100, 02
| 1059, 59
| 1156, 05
|
| 1055, 55
| 1161, 47
| 1159, 24
| 1155, 98
| 1163, 84
| 1174, 53
| 1189, 4
| 1102, 87
| 1062, 33
| 1159, 04
|
Приложение 11
Анализ автокорреляции ряда
Estimated Autocorrelations for ConsGOODS
|
|
| Lower 95, 0%
| Upper 95, 0%
| Lag
| Autocorrelation
| Stnd. Error
| Prob. Limit
| Prob. Limit
|
| 0, 955248
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 904005
| 0, 148561
| -0, 291174
| 0, 291174
|
| 0, 853554
| 0, 186653
| -0, 365834
| 0, 365834
|
| 0, 799529
| 0, 214996
| -0, 421384
| 0, 421384
|
| 0, 736516
| 0, 237089
| -0, 464687
| 0, 464687
|
| 0, 663977
| 0, 254337
| -0, 498492
| 0, 498492
|
| 0, 596651
| 0, 267536
| -0, 524363
| 0, 524363
|
| 0, 534354
| 0, 277737
| -0, 544357
| 0, 544357
|
| 0, 463317
| 0, 285656
| -0, 559877
| 0, 559877
|
| 0, 38415
| 0, 291468
| -0, 571268
| 0, 571268
|
| 0, 312689
| 0, 295397
| -0, 578969
| 0, 578969
|
| 0, 242585
| 0, 297972
| -0, 584015
| 0, 584015
|
| 0, 167343
| 0, 299511
| -0, 587031
| 0, 587031
|
| 0, 10929
| 0, 30024
| -0, 588461
| 0, 588461
|
| 0, 0592736
| 0, 300551
| -0, 58907
| 0, 58907
|
| 0, 0189565
| 0, 300642
| -0, 589249
| 0, 589249
|
| -0, 0183854
| 0, 300652
| -0, 589267
| 0, 589267
|
| -0, 0457655
| 0, 30066
| -0, 589285
| 0, 589285
|
| -0, 0616535
| 0, 300715
| -0, 589391
| 0, 589391
|
| -0, 0831201
| 0, 300814
| -0, 589585
| 0, 589585
|
| -0, 0981423
| 0, 300993
| -0, 589936
| 0, 589936
|
| -0, 114109
| 0, 301243
| -0, 590426
| 0, 590426
|
| -0, 11543
| 0, 30158
| -0, 591088
| 0, 591088
|
| -0, 112791
| 0, 301925
| -0, 591764
| 0, 591764
|
Estimated Partial Autocorrelations for ConsGOODS
| Partial
|
| Lower 95, 0%
| Upper 95, 0%
| Lag
| Autocorrelation
| Stnd. Error
| Prob. Limit
| Prob. Limit
|
| 0, 955248
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 0970735
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 0126156
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 0701198
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 128263
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 136785
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 027253
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 0123685
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 13413
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 121182
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 037319
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 0683891
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 108885
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 192417
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 0172174
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 0230192
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 00320551
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 0899016
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 0124698
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 1466
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 0986533
| 0, 0883883
| -0, 173238
| 0, 173238
|
| -0, 0968146
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 0642445
| 0, 0883883
| -0, 173238
| 0, 173238
|
| 0, 0192838
| 0, 0883883
| -0, 173238
| 0, 173238
|
Приложение 12
Расчет Q-статистики Бокса-Пирса и Бокса-Льюинга
Популярное:
|