Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Comparison of Alternative ModelsСтр 1 из 4Следующая ⇒
2) Модель линейного тренда с константой
Simple Regression - ConsGOODS vs. num (num< 125) Dependent variable: ConsGOODS Independent variable: num Selection variable: num< 125 Linear model: Y = a + b*X
Coefficients
Analysis of Variance
Correlation Coefficient = 0, 533653 R-squared = 28, 4786 percent R-squared (adjusted for d.f.) = 27, 8923 percent Standard Error of Est. = 144, 462 Mean absolute error = 111, 967 Durbin-Watson statistic = 0, 110215 (P=0, 0000) Lag 1 residual autocorrelation = 0, 944686 Half-slope = 0, 384949
ConsGOODS = 824, 41 + 2, 52608*num
3) Линейно-логарифмическая функция 2-го порядка:
Multiple Regression - (ConsGOODS) (num< 125) Dependent variable: (ConsGOODS) Independent variables: log(num) 2*log(num)^2 Selection variable: num< 125
Analysis of Variance
R-squared = 28, 6157 percent R-squared (adjusted for d.f.) = 27, 4358 percent Standard Error of Est. = 144, 919 Mean absolute error = 113, 994 Durbin-Watson statistic = 0, 117019 (P=0, 0000) Lag 1 residual autocorrelation = 0, 93726
Stepwise regression Method: backward selection F-to-enter: 4, 0 F-to-remove: 4, 0
Step 0: 2 variables in the model. 121 d.f. for error. R-squared = 28, 62% Adjusted R-squared = 27, 44% MSE = 21001, 4
Final model selected.
The StatAdvisor The output shows the results of fitting a multiple linear regression model to describe the relationship between (ConsGOODS) and 2 independent variables. The equation of the fitted model is
(ConsGOODS) = 951, 229 - 136, 183*log(num) + 17, 7058*2*log(num)^2
Regression Results for (ConsGOODS)
4) Парабола третьего порядка:
Multiple Regression - ConsGOODS (num< 125) Dependent variable: ConsGOODS Independent variables: (num) num^2 num^3 Selection variable: num< 125
Analysis of Variance
R-squared = 31, 4408 percent R-squared (adjusted for d.f.) = 30, 3076 percent Standard Error of Est. = 142, 022 Mean absolute error = 111, 399 Durbin-Watson statistic = 0, 115369 (P=0, 0000) Lag 1 residual autocorrelation = 0, 939841
Stepwise regression Method: backward selection F-to-enter: 4, 0 F-to-remove: 4, 0
Step 0: 3 variables in the model. 120 d.f. for error. R-squared = 32, 10% Adjusted R-squared = 30, 40% MSE = 20143, 1
Step 1: Removing variable (num) with F-to-remove =1, 16343 2 variables in the model. 121 d.f. for error. R-squared = 31, 44% Adjusted R-squared = 30, 31% MSE = 20170, 3
Final model selected.
ConsGOODS = 829, 366 + 0, 0739677*num^2 - 0, 000476454*num^3
Regression Results for ConsGOODS
5) Логистическая функция: , где
Multiple Regression - ConsGOODS (num< 125) Dependent variable: ConsGOODS Independent variables: 1/(1+0.55*exp(-0.013*num)) Selection variable: num< 125
Analysis of Variance
R-squared = 97, 9494 percent R-squared (adjusted for d.f.) = 97, 9494 percent Standard Error of Est. = 143, 318 Mean absolute error = 114, 351 Durbin-Watson statistic = 0, 111105 Lag 1 residual autocorrelation = 0, 943892
Stepwise regression Method: backward selection F-to-enter: 4, 0 F-to-remove: 4, 0
Final model selected.
ConsGOODS = 1237, 5*1/(1+0.55*exp(-0.013*num))
Популярное:
|
Последнее изменение этой страницы: 2016-05-03; Просмотров: 692; Нарушение авторского права страницы