Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Функциональная анатомия костной системы.



Лекция 1

Вводная лекция.

1. Предмет и задачи анатомии, ее место в ряду биологических дисциплин, значение для теоретической и практический медицины.

2. Краткая история развития анатомии как науки.

3. Современные методы анатомического исследования

4. Анатомические принципы структурной организации тела человека.

5. Основные этапы онтогенеза человека.

 

Анатомия является одной из важнейших медико-биологических дисциплин, поскольку предметом изучения анатомии является человек – самый высокоорганизованный живой организм. В тоже время она является морфологической дисциплиной, так как изучает внешние формы и внутреннее строение всего тела и каждого органа в отдельности. Современная анатомия пытается объяснить причину структуры человеческого тела. Вместе с физиологией, анатомия составляет основу или фундамент теоретической и практической медицины.

Значение анатомии хорошо понимали крупные ученые и врачи. В начале 19 века великий русский врач Мухин сказал: «Врач не анатом – не только бесполезен, но и вреден». Знаменитые врачи 19 века Пирогов Н.И., Губарев и др. показали, что анатомия человека является «верной и полезной подругой на пути практической медицины, она заботливая мать хирургии». Таким образом, не зная точно форму и строение человеческого тела нельзя правильно понимать жизненные функции здорового и больного человеческого организма, ясно представить причины болезни и приводить адекватно терапию.

Название анатомия происходит от слова «анатемно» (греч.) – рассечение, расчленение. Этот термин обусловлен тем, что первоначальным и основным методом добывания фактов, был метод анатомирования человеческого трупа. Над входом в анатомический театр висело изречение: «Здесь смерть служит торжеству жизни». Анатомия является одной из древних наук. Материальные памятники культуры человека свидетельствуют о раннем появлении анатомических сведений. Первобытные люди знали о положении жизненно важных органов. В Древнем Египте ритуальное бальзамирование трупов позволило описать некоторые органы с данными об их функциях. В древних папирусах имеются сведения о мозге, сердце, внутренних органах. Наибольшие успехи были получены в античной Греции. Так, врач древности Гиппократ, которого называют отцом медицины, сформировал принципы о четырех типах телосложения и темперамента, подробно описал кости крыши черепа. Другой врач – Аристотель различал сухожилия и нервы, кости и хрящи. Клавдий Гален собрал все анатомические сведения и оформил это как учебник. Этими сведениями пользовались врачи в течение нескольких веков. Гален описал 7 из 12 черепных нервов. Его ошибкой было то, что изучения он проводил на животных и переносил это на человека. Он считал, что строение человеческого организма предначертано свыше.

В эпоху раннего феодализма господство богослужения не способствовало развитию науки, особенно анатомии в Европе. Этот период характеризуется развитием культуры Востока. Среди ученых этого времени особенно выделяется Авиценна. Канон врачебной науки – учебник Авиценны был переведен на латинский язык. В нем содержались сведения об анатомии.

Во II тыс. появляются медицинские школы, в которых периодически разрешалось вскрытие трупа. Особенно большой вклад в развитие анатомии в этот период внесли Леонардо да Винчи и Андрей Везалий. Так да Винчи произвел вскрытие 30 трупов, сделал многочисленные зарисовки костей, мышц, сердца, некоторых внутренних органов и составил письменные пояснения этим рисункам, предложил классификацию мышц и объяснил их функцию. Везалий – профессор Падуанского университета, написал труд о строении человеческого тела, в котором, на основании собственных наблюдений, довольно точно описал анатомию человека. В 16-17 веке уже стали проводить публичные вскрытия трупов, для чего создавались анатомические театры, был усовершенствован метод бальзамирования и были созданы коллекции анатомических препаратов, в том числе демонстрации пороков развития и аномалии. Петр I во время посещения Голландии приобрел у Рюира 1500 препаратов, которые стали основой Петербургской кунсткамеры. Из ученых 19 века, обогативших анатомию новыми сведениями, можно привести следующих: Уильям Гарвеи, который привел доказательство о движении крови по сосудам большого круга обращения; Мальпигий описал с помощью микроскопа кровеносные капилляры и положил начало микроскопической анатомии. В России в этом периода важное значение имели труды профессоров медицинских факультетов: Мухина, Загорского, Буяльского, Пирогова, Лесгафта.

Пирогов Н.И. – великий хирург и анатом обобщил результаты многолетних трудов в книге «Топографическая анатомия, иллюстрированная разрезами, проведенными через замороженное тело в трех направлениях. Хирургическая анатомия артериальных стволов и фасций». Его перу принадлежит полный курс прикладной анатомии человеческого тела. Именем Пирогова названы треугольники на шее, апоневроз двуглавой мышцы плеча, лимфатический узел в области бедренного канала.

Лесгафт – автор фундаментального труда «Основы теоретической анатомии». Он является основоположником функциональной анатомии и теории физического воспитания. Из анатомов 20 века можно назвать имена Иосифова и Жданова – основоположников функциональной анатомии лимфатической системы. Куприянов дал представление о микроциркуляции. Сапин – исследователь иммунной системы.

 

Основные методы исследования в анатомии

Самым древним методом анатомического исследования является метод анатомирования, препарирования. В настоящее время для познания строения живого человека применяются другие методы:

1) Антропометрия, которая позволяет измерить длину и массу тела, выявить их взаимоотношения, определить пропорции тела, тип конституции.

2) Инъекция, заполнение окрашенной массой, разведенной растворами, полостей тела, просветов бронхиального дерева, кровеносных и лимфатических сосудов, полых органов (применена ещё в 16 веке). Метод инъекции дополняется последующей коррозией и просветлением органов и тканей;

3) Микроскопический метод - появляется с изобретением увеличения предметов с помощью лупы и микроскопа. Благодаря этому методу удалось выявить сети кровеносных и лимфатических капилляров, внутриорганные сплетения сосудов и нервов. Уточнены структуры долек, ацинусов.

4) Рентгеноскопия и рентгенография, которые позволяют изучить прижизненную форму и функциональные особенности живого человека. В настоящее время используется компьютерная томография, ЯМР (ядерная магнитно-резонансная рентгенография), спиральная компьютерная томография. Рентгенография часто дополняется применением рентген контрастных веществ..

5) Эндоскопическое исследование (гастроскопия, бронхоскопия, колоноскопия, лапароскопия, цистоскопия, гистероскопия и др.) Этот метод позволяет увидеть с помощью оптических приборов, вводимых через естественные и искусственные отверстия окраску, рельеф органов и слизистой оболочки.

6) Ультразвуковое исследование (эхография), основано на отражении тканями ультразвука. Он позволяет определить внешние формы, размеры, толщину стенок исследуемых органов, их внутреннюю структуру.

Структурно-функциональной единицей всего живого, в том числе и человеческого организма, является клетка. В теле человека огромное количество клеток. Каждая разновидность клеток отличается по форме, размерам и внутреннему строению, но каждая из них имеет ядро и цитоплазму, окруженную клеточной мембраной. В цитоплазме клеток находятся органеллы: митохондрии, аппарат Гольджи, лизосомы и другие, а также включения белковых, углеводных, липидных и пигментных гранул. Клетки бывают одноядерные и многоядерные. Клетки образуют ткани.

Ткань – исторически сложившаяся система, состоящая из клеток общего строения, происхождения и функции. Кроме клеток ткань содержит живое промежуточное межклеточное вещество. В организме различают 4 основные ткани: эпителиальную, соединительную, мышечную, нервную. Каждая из них имеют ряд разновидностей.

Эпителиальная ткань выполняет покровную (пограничную) и выделительную (секреторную) функции. Находясь на границе с внешней средой, эпителий осуществляет защитную и барьерную функцию. Через нее происходит обмен веществ, эпителий покрывает все тело снаружи (кожный) и выстилает внутренние органы и различные полости нашего тела изнутри; слизистую оболочку пищеварительной трубки, дыхательных путей и мочеполовой системы. Эпителий образует выделительные органы нашего тела (потовые, сальные, молочные, пищеводные, половые и эндокринные железы).

Для этой ткани характерно, что она состоит из тесно сложенных друг с другом эпителиальных клеток различной формы (плоских, кубических, цилиндрических), расположенных на базальной мембране.

Между клетками лишь тонкие прослойки склеивающего межклеточного вещества. Различают однослойный и многослойный эпителий, однорядный и многорядный эпителий.

Вторая ткань – соединительная. Она имеет механическое значение, образуя твердые опорные ткани, за счет которых построен твердый и мягкий остов человеческого тела. Сюда относятся костная, хрящевая и волокнистая (фиброзная) соединительная ткань. Кровь и лимфа относятся к соединительной ткани. Главное отличие соединительной ткани состоит в том, что между клетками находится большое количество промежуточного вещества. Это вещество в свою очередь состоит из коллагеновых и эластических волокон. Коллагеновые волокна отличаются высокой механической прочностью. Эластические волокна обладают способностью к растяжению под действием силы и возвращению к исходной величине и толщине после прекращения действия этой силы. Важнейшей функцией соединительной ткани является трофическая функция. Кровь, являясь своеобразной формой соединительной ткани, питает все органы.

Мышечная ткань осуществляет перемещение тела в пространстве, движение крови в сосудах и сокращение стенок внутренних органов. Различают гладкую и поперечно-полосатую мышечные ткани.

Нервная ткань состоит из нервных клеток (нейроны), их отростков и нейроглий. Из нервной ткани построены центральная нервная система и периферическая нервная система. Они осуществляют связь организма с внешней средой и обеспечивают целостную функцию всего организма. Ткани не существуют изолированно, а вместе участвуют в построении тех или других органов.

 

Орган – это часть тела, занимающая в организме определенное положение, отличающаяся определенной формой, имеющая особое строение и выполняющее присущую ему, особую функцию. Органы тела принято объединять в системы и аппараты.

Система органов – это ряд органов, анатомически и топографически связанных друг с другом, имеющих общий план строения, общее происхождение в фило- и онтогенезе и выполняющих одну функцию.

Аппарат – это скорее физиологическое объединение органов, выполняющих однородную функцию, но они не имеют топографической связи иобщности строения.

 

Онтогенез

Онтогенез – это развитие организма от момента зачатия до смерти. В онтогенезе различают 2 периода: пренатальный и постнатальный.

I. Пренатальный – развитие от зачатия до рождения

II. Постнатальный – от рождения до смерти

III. Интранатальный период – короткий промежуток между схватками и рождением.

Пренатальный период делится на 2 стадии: эмбриональную (до конца 8 недели) и плодную ( с 3 месяца до рождения). Эмбриональная стадия состоит из следующих фаз:

1) зигота

2) бластуляция

3) гаструляция – образование 3-х зародышевых листков

4) дифференциация тканей (гистогенез)

5) дифференциация органов (органогенез)

Зигота -

 

В фазу гаструляции образуются 3 зародышевых листка: эктодерма – наружный зародышевый листок; мезодерма – средний зародышевый листок и энтодерма – внутренний зародышевый листок.

Производными эктодермы являются эпителий кожных покровов или эпидермис и эпителиальные придатки кожи ( потовые и сальные железы, ногти и волосы). Эктодермальное происхождение имеют и эпителиальные выстилки ротовой полости и конечного отдела пищеварительной трубки. К производными эктодермы относится нервная система, а также органы чувств.

Энтодерма, дает начало эпителию, выстилающему пищеварительную трубку. Она образует пищеварительные железы, среди которых печень, поджелудочная железа, слюнные железы, дает начало закладке дыхательных органов, из неё образуются некоторые железы внутренней секреции. Из мезодермы происходят соединительно-тканные структуры тела: кости, хрящи, фиброзная ткань мышцы, сосудистая система мышечная и лимфатическая ткани.

Постнатальный период – характеризуется наличием различных возрастных групп.

1) новорожденные – от 1 до 10 дней

2) грудной возраст – от 10 дней до 1 года

3) раннее детство – от 1 до 3 лет

4) первое детство – от 4 до 7 лет

5) второе детство – от 8 до 12 лет у мальчиков и от 8 до 11 лет у девочек

6) подростковый возраст – от 13 до 16 лет мальчики и от 12 до 16 лет девочки

7) юношеский – 17-21 год – юноши и 16-20 – девушки

8) зрелый возраст:

а) от 22 до 35 – мужчины, от 21 до 35 – женщины

б) от 36 до 60 – мужчины, от 36 до 55 – женщины

9) пожилой возраст – от 61 до 71 – мужчины, от 56 до 74 женщины

10) старческий возраст – от 75 до 90

11) долгожители – от 90 лет и до конца

 


Лекция№2

Классификация костей.

Кости разделяются по форме и размерам. Выделяют следующие группы костей:

1) Трубчатые – длинные и короткие. Они образуют скелет конечностей, средняя часть трубчатых костей называется диафизом, а концы – эпифизами. Зона перехода диафиза в эпифиз называется метафизом. На концах этих костей могут быть апофизы.

2) Плоские или широкие кости, которые, как правило, выполняют функцию защиты, образуя естественные полости тела, или формируют обширные поверхности для прикрепления мышц. Для них характерно наличие 2-х компактных пластинок, между которыми находится губчатое вещество.

3) Короткие кости находятся в местах наибольшей подвижности тела, совмещающиеся с сопротивлением значительным сдавливающим скелет силам ( запястье и предплюсна) они построены из губчатого вещества, покрытого тонким слоем компактного.

4) Смешанные кости (позвонки) имеют несколько частей слившиеся между собой и имеющие разную форму, функцию и развитие.

5) Воздухоносные (пневматизированные) кости, которые имеют полости, выстланные слизистой оболочкой и заполненные воздухом.

 

Эмбриональное развитие.

Скелет человека закладывается относительно рано. Уже к концу 2-го месяца вырисовывается тело зародыша с перепончатым скелетом, элементы которого представляют собой островки сгущенной мезенхимы. На 3-м месяце в этих сгущениях клеток возникают остеогенные клетки, которые контактируют между собой своими отростками. Они напоминают синцитии (многоядерные клетки). Уплотнение ткани проводит к сбалансированию ядер, исчезновению видимых границ между клетками, но отложение неорганических веществ и накапливание органического вещества вынуждает клетки к разъединению. Возникает хрящевая эмбриональная ткань, которая заменяет мезенхиму. Но так происходит не везде. Некоторые части перепончатого скелета продолжают существовать с элементами хрящевого скелета. Стадия хрящевого скелета не продолжительна и уже на 3-м месяце появляется остеоидная ткань, что означает начало окостенения. Кости возникают и в остатках перепончатого скелета. Кости, которые возникают прямо из соединительной ткани, минуя стадию хряща называются первичными костями. Первичное костеобразование расчленяется на несколько фаз, происходит прорастание сосудов к уплотнениям скелетогенной мезенхимы.

По сосудам сюда доставляются микроэлементы, оседающие в межклеточном веществе. В последствии они входят в состав кристаллов костных апатитов. Мезенхимальные клетки приобретают способность синтезировать оссеин и выделять его. Число мезенхимальных клеток увеличивается путем деления, происходит их преобразование в остеобласты, то есть клетки, дающие начало остеоцитам, составляющим точки или ядра окостенения. В них сначала развивается грубоволокнистая, а затем более упорядоченная пластинчатая костная ткань. Перестройка костей осуществляется с помощью остеокластов, которые обладают способностью разрушать костные клетки. Противоборство остеокластов и остеобластов является источником и движущей силой саморазвития кости.

Вторичная кость, то есть кость, которая проходит три стадии развития (перепончатую, хрящевую, костную) и избирает другие пути своего становления:

1) перихондральное развитие – перихондрум – надхрящница, из ее камбиальных (ростковых) элементов возникают пополнения хондробластов. Наступает момент, когда клетки надхрящницы преобразуются в остеобласты. Причиной этого превращения немецкий ученый Паувелс считает субмикроскопические раздражения, связанные с земной тягой и изменениями гидростатического давления.

Поскольку надхрящница оказывается продуцентом костных клеток, она становится надкостницей. Под влиянием размножающихся костных клеток, хрящи дегенерируют в них появление точки обызвествления. Разрушение хряща берут на себя и остеокласты. Ядро окостенения разрастается по окружности хряща с формированием костной манжетки, которая на месте диафиза кости всё больше завладевает хрящевой моделью, распространяясь по её длине и оттесняя хрящ к концам кости. В сложившейся кости формируются остеоны, возникает костномозговая полость.

Остеобласты, мигрирующие по ходу сосудов, оседают в концах будущих костей, давая начало росту ядер энхондрального окостенения в эпифизах. К этому времени хондробласты уже утратили способность к размножению и превратились в хондроциты. Рост хряща прекратился, началось его уничтожение полчищами остеобластов и остеокластов. Обызвествление основного вещества придаёт точке окостенения необходимую завершённость. Размеры его увеличиваются, зоны перихондрального и эндохондрального роста кости сближаются. Между ними и после рождения ребёнка сохраняется до наступления половой зрелости зона эпифизарного ( мета-эпифизарного) хряща. за счёт которой происходит рост костей в длину. Нагрузки на растущую кость в области эпифизов обуславливают построение губчатого вещества с характерным расположением балок.

2) Энхондральное развитие характеризуется образованием ядра окостенения внутри хрящевой модели.

По таким же законам перестраивается вещество кости в течении всей жизни. Считается, что поставщиком остеобластов у взрослого человека является надкостница. Но рассеянные остеобласты встречаются и в ретикулярной ткани костного мозга. Способность к регенерации костной ткани лучше выражена в первой половине жизни. Благодаря этой способности происходит сращение концов поломанных костей.

 


Лекция № 3

Лекция № 4

Функциональная анатомия мышечной системы.

 

Кости и их соединения как пассивные органы двигательного аппарата находятся в тесной анатомической связи с мышцами_ активными органами двигательного аппарата. Все движения тела человека осуществляются за счёт силы, которую развивают сокращения мышечных волокон гладкой и поперечно-полосатой мышечной ткани. Гладкая мышечная ткань находится в стенках внутренних полых органов, кровеносных и лимфатических сосудах, в коже. Гладкая мускулатура функционирует непроизвольно, т.е. она не подчиняется воле человека, иннервируется ВНС. Она сокращается медленнее, но отличаются большой силой и неутомляемостью. Гладкая мускулатура стоит на более низкой ступени развития и состоит из одноклеточных образований – миоцитов, клеток веретенообразной формы небольшой величины, 50 мкм в длину и 6 мкм в ширину. Переплетаясь друг с другом, они образуют сети, а, складываясь, формируют пласты гладкой мышечной ткани. Поперечно-полосатая мышечная ткань располагается там, где движения происходят энергично и быстро, т.е. они образуют скелетную мускулатуру, которая производит движения конечностей, рёбер, обеспечивая акт дыхания, производят действие брюшного пресса, движения позвоночника, головы и шеи, а также акт жевания. Кроме того, от скелетных мышц зависят движения глаз, артикуляция речи, глотание и другие жизненно важные процессы. Именно мышечная система способна воспроизводить активные движения, без которых невозможна жизнь высокоорганизованных животных, в том числе и человека. Жить – значит приспосабливаться к условиям существования. В шкалу приспособлений входят активные движения, так как труд, питание, дыхание, общение, защита и даже деторождение не могут происходить без них. В книге «Рефлексы головного мозга» великий русский физиолог Сеченов И.М. сто лет назад писал: «Всё бесконечное разнообразие внешних проявлений мозговой деятельности сводится окончательно к одному лишь явлению –мышечному движению. Смеётся ли ребёнок при виде игрушки, улыбается ли Гарибальди, когда его гонят за излишнюю любовь к родине, дрожит ли девушка при первой мысли о любви, создаёт ли Ньютон мировые законы и пишет их на бумаге – везде окончательным фактом является мышечное движение». Скелетная мускулатура произвольная, т.е. действует по воле человека, иннервируется СНС, она сокращается быстро, но утомляется и требует отдыха.

Структурной единицей поперечно-полосатой мышечной ткани является мышечное волокно, длина которых может достигнуть 10 -15 см. Толщина волокон меняется с возрастом, у новорожденных она составляет 6-7 мкм, у взрослого – до 70 мкм. У лиц, занимающихся спортом она равна 100 мкм (0, 1 мм). Они представляют собой многоядерные образования, напоминающая симпласты. Количество ядер в одном волокне может быть до 120. мышечное волокно окружено фибриллярной оболочкой – сарколеммой. В саркоплазме находятся многочисленные продольно идущие тонкие нити – миофибриллы или мышечные волоконца. Они состоят из чередующихся друг с другом светлых и тёмных пластинок (дисков), по- разному преломляющих свет. Светлые диски обладают простым лучепреломлением и называются изотропными, а тёмные – двойным лучепреломление, они называются анизотропными дисками. Чередование светлых и тёмных дисков создаёт впечатление поперечной исчерченности. Миофибриллы построены из специализированны мышечных белков – миозина и актина, имеющие определённую конфигурацию. В основе сократительной способности мышечного волокна лежит изменение конфигурации молекул этих белков. Молекулы актина втягиваются в промежутки между молекулами миозина, в результате чего происходит сокращение мышечного волокна и всей мышцы почти в 2 раза (около 30%). Кроме миофибрилл мышечное волокно содержит белок миоглобин, придающий волокну и всей мышце характерный красно-бурый цвет. Около 300 лет назад было замечено, что окраска мышечных волокон не одинакова, и выделены красные и белые мышечные волокна. Мышечные волокна, где много миофибрилл и мало саркоплазмы, белые. Они быстрые и ловкие мышцы. Волокна же, где мало миофибрилл и много саркоплазмы – красные. Это медленные и сильные мышцы. У человека почти всей мышцы содержат и белые, и красные мышечные волокна, с преобладанием одной из них, в зависимости от функции (белые – в икроножной мышце и красные – в камбаловидной).

Каждое мышечное волокно окружено рыхлой соединительной тканью - эндомизием. Соседние волокна объединяются в пучки 1 –го порядка, окруженные перимизием. Пучки первого порядка объединяются в более крупные 2 и 3 –го порядков, покрытых также перимизием. Построенная из многих пучков мышца снаружи покрыта тонким слоем рыхлой соединительной ткани – эпимизием. Соединительнотканные элементы мышцы продолжаются в её сухожилие. У большинства мышц они имеют форму удлинённых цилиндрических тяжей. На туловище некоторые из них образуют пластинчатые сухожильные растяжения, называемые апоневрозами.

 

Классификация мышц.

Проводится по форме, расположению волокон и функции. Наиболее часто встречается веретенообразная форма. В такой мышце выделяют головку, мышечное брюшко и хвост. По числу головок мышцы могут быть двухглавые, трёхглавые, четырёхглавые. По числу брюшек - двубрюшные. Кроме веретенообразных мышц выделяют лентовидные, перистые (одно-, двух- и много). По протяженности мышцы могут быть длинными, короткими, широкими. По форме различают трапецевидные, ромбовидные, квадратные, треугольные, круговые. По функции мышцы делятся на сгибатели и разгибатели, абдукторы и аддукторы, пронаторы и супинаторы.

К вспомогательным элементам мышц относятся фасции, фиброзные каналы и синовиальные влагалища сухожилий, синовиальные сумки суставов и сессамовидные кости. В изучении фасций большая заслуга принадлежит Н.И.Пирогову. в 1846 г. вышла его книга «Хирургическая анатомия артериальных стволов и фасций». С тех пор идёт их исследование с разных точек зрения.

Фасции – это соединительнотканные оболочки, заключающие мышцы и органы, отделяющие места их залегания, а также клетчаточные пространства. Его функциями являются:

Лекция №5

Развитие нервной системы.

Нервная система развивается из эктодермы – наружного зародышевого листка на границе с внешней средой. Она формируется в стадии зародышевого щитка в виде мозговой или медуллярной полоски, которая отличается более темной окраской. В дальнейшем мозговая полоска растет более активно, чем окружающая эктодерма, в результате чего она изгибается в поперечном направлении с образованием мозговой или медуллярной бороздки. .

Края мозговой бороздки носят название медуллярных валиков. Они растут особенно активно, срастаясь друг с другом, смыкаются и образуют нервную трубку (на 4 неделе). Медуллярные валики отделяются от нервной трубки и превращаются в ганглионарные гребешки, из которых в туловищной части развиваются спинно-мозговые узлы, а в головной части – узлы черепно-мозговых нервов, из которых самый крупный – узел тройничного нерва. Передняя часть нервной трубки шире и является закладкой головного мозга, более узкая туловищная часть представляет собой закладку спинного мозга. В конце третьей недели передний конец начинает вздуваться в виде трех мозговых пузырей: переднего, среднего и ромбовидного. Более интенсивно растут передний и ромбовидные пузыри, каждый из них, в свою очередь, подразделяется на два мозговых пузыря. Таким образом, к концу второго месяца образуются пять мозговых пузырей: концевой, промежуточный, средний, задний и продолговатый.

Концевой мозговой пузырь растет особенно активно и разделяется на две части – будущие полушария головного мозга. Не меньшее значение, чем неравномерный рост мозговых пузырей имеет образование изгибов.

Изгибы:

1. Дорзальный теменной – располагается выпуклостью кверху и соответствует среднему мозгу;

2. вентральный мостовой изгиб – образуется в месте прорастания нервных волокон справа налево и наоборот, формируя мост.

3. Дорзальный затылочный – на границе перехода головного мозга в спинной.

Из стенок пузырей идет формирование всех отделов головного мозга, а сами полости дают начало желудочкам головного мозга и водопроводу.

Аномалии развития:

Они встречаются примерно у 0, 1-0, 2% новорожденных. Часто они не совместимы с жизнью или сопровождаются тяжёлыми нарушениями функции в том числе и психики.

Анэнцефалия – полное или почти полное отсутствие головного мозга, сочетающееся с обширным дефектом костей свода черепа. Носит наследственный характер, но может возникнуть от действия повреждающих веществ, приводящих к гипоксии мозга.

Микроцефалия – результат недостаточного роста мозга и черепа. Масса мозга не достигает 1000 г. установлена наследственная предрасположенность аномалии, но может возникнуть от экзогенных воздействий: например облучение. Обычно сопровождается слабоумием.

Мозговая грыжа образуется при наличии дефекта в костной стенке черепа. Чаще в лобной и затылочной областях. Причиной может быть избыточный рост мозга или гидроцефадия.

Гидроцефалия возникает в результате гиперпродукции спинномозговой жидкости или нарушения ликворообращения в результате воспалительного заболевания или неправильного развития мозга.

Аномалии отдельных областей мозга: отсутствие или недоразвитие мозжечка; дефект мозолистого тела; агирия – отсутствие борозд, макрогирия – большое число крупных извилин; микрогирия- полушария покрыты множеством мелких извилин, напоминая мозг дельфина. В развитии аномалии немаловажную роль играет алкоголь.

 

 

Лекция № 6

 

АНАТОМИЯ ГОЛОВНОГО МОЗГА.

 

Головной мозг вместе со всеми своими областями располагается в полости черепа. Он состоит из ствола мозга, мозжечка и полушарий большого мозга. Полушария большого мозга самые новые в филогенетическом отношении образования головного мозга. Они, в свою очередь, состоят из обонятельного мозга, базальных ядер и плаща. Полушария носят название конечного мозга и являются частью переднего мозга. Другая часть переднего мозга – это промежуточный мозг. Сюда входят таламическая область и гипоталамус. Ствол мозга образован продолговатым мозгом, мостом, средним мозгом. Мост и мозжечок образуют задний мозг (methencefalon). Вместе с продолговатым они являются производными ромбовидного мозгового пузыря.

Головной мозг окружен тремя оболочками. Непосредственно к веществу мозга прилежит мягкая или сосудистая оболочка. Следующая за ней оболочка называется паутинной (arachnaidea). Самая наружная – твердая мозговая оболочка. Она прилежит плотно к внутренней поверхности черепа и образует надкостницу для костей черепа. Между оболочками головного мозга располагаются два пространства: субдуральное и субарахноидальное. В последнем находится спинномозговая жидкость. Такая же жидкость находится и в желудочках головного мозга: двух боковых, в третьем и четвертом. Спинномозговая жидкость продуцируется сосудистыми сплетениями желудочков. Сосудистые сплетения состоят из сети множества капилляров, покрытых кубическим эпителием. За сутки они продуцируют около 600 мл спинномозговой жидкости, которая по составу напоминают плазму крови, имеет вид бесцветной жидкости, содержит белки, жиры и углеводы, неорганические вещества. Эта жидкость окружает головной и спинной мозг, выполняет защитную функцию (буфер), питает глубокие структуры головного мозга, бедные кровеносными сосудами, уносит из мозга вредные продукты обмена и создает определенное внутричерепное давление, необходимое для деятельности мозга. Поскольку вместимость желудочков (50 мл) и субарахноидального пространства значительно меньше суточной секреции спинномозговой жидкости существует так называемое ликворообращение, то есть она из желудочков течет в субарахноидальное пространство, а из него – поступает в венозную кровь.

В конечном мозге (полушария мозга) самая новая структура – плащ, который состоит из серого и белого вещества. Серое вещество расположено снаружи и образует кору больших полушарий. Толщина в разных отделах коры различна: от 3 до 6 мм. Кора увеличивает свою поверхность образованием извилин, отделенных друг от друга многочисленными бороздами. Строение коры, пространственное взаимоотношение структур коры носит название архитектоники коры. В коре располагаются нервные клетки (нейроциты). Их взаиморасположение называют цитоархитектоникой коры. Глиоархитектоника изучает нейроглию. Миелоархитектоника – учение о волоконном составе коры. Ангиоархитектоника рассматривает расположения сосудов коры.

 

Цитоархитектоника коры.

Большой вклад в изучение клеточного строения коры внес киевский анатом Бец, который еще в 19 веке в моторной зоне коры описал особо большие пирамидные клетки, которые получили название гигантских пирамидных клеток Беца. Он утверждал, что клеточное строение коры различно в разных отделах головного мозга и выделял 11 участков (полей) коры с разным строением. В дальнейшем это учение значительно развил немецкий невролог Бродман. Он определил 52 цитоархитектонических поля. Столько же полей описывается Институтом Мозга Академии медицинских наук. Некоторые из полей соответствуют корковым концам анализаторов. В моторной зоне коры имеются нервные клетки расположенные шестью слоями (шестислойная кора):

1) молекулярная пластинка, которая состоит в основном из дендриттов нервных клеток нижележащих слоев и одиночных мелких клеток преимущественно веретенообразной формы;

2) наружная зернистая пластинка – состоит из плотно прилегающих друг к другу мелких нервных клеток (клетки-зерна) различной формы;

3) наружная пирамидальная пластинка – состоит из малых и средних пирамидальных клеток;

4) внутренняя зернистая пластинка – мелкие звездчатые клетки;

5) внутренняя пирамидальная пластинка – состоит из больших и гигантских пирамидных клеток Беца;

6) мультиформная пластинка – пронизана полиморфными клетками преимущественно веретенообразными и пирамидными.

Наряду с горизонтальной организацией в виде пластинок, расположенных друг под другом на протяжении всей поверхности коры, клетки обладают и вертикальной организацией. они группируются в корковые колонки (мозговые колонки), составляющие структурно-функциональные комплексы, наделенные некоторой самостоятельностью. Каждая колонка представляет ряд вертикально расположенных нейронов, проходящий через все пластинки коры.. согласно концепции В.Маунткасла они являются модулями, единицами обработки информации., обладающими собственным входом и выходом. В каждой колонке в сенсорных полях (чувствительных) воспринимается только определенный вид чувствительности. Имеет вход и выход по аналогии с компьютерными системами. Включаясь в состав рефлекторных дуг, клетки коры являются вставочными нейронами.

Второй и четвёртый слои коры воспринимают информацию («вход» в кору). Они распределяют нервные импульсы на пирамидные нейроциты третьего и пятого слоев.

Третий слой выполняет функцию связи различных чувств коры друг с другом, а пятый передает информацию в подкорковые структуры («выход» коры).

Диаметр колонок составляет 30 мкм. Количество нейронов в колонках характеризуется большим постоянством. Почти во всех областях коры колонка содержит около 110 нейронов. Корковые колонки окружены радиально расположенными нервными волокнами и кровеносными сосудами, т.е. они имеют анатомические границы.

Миелоархитектоника – Нервные волокна в коре идут в двух направлениях: тангенциально (параллельно поверхности коры) и радиально (перпендикулярно поверхности коры). Тангенциальные волокна, группируясь, образуют так называемые мозговые полоски, расположенные между пластинами нейроцитов. Различают следующие полоски:

1) Полоска наружной зернистой пластинки.

2) Полоска внутренней зернистой пластнки или наружная полоска Байярже;

3) Полоска ганглионарной пластинки или внутренняя полоска Байярже.

Радиальные внешние волокна входят как лучи из белого вещества в кору, проходят между мозговыми колонками и связывают кору с ниже лежащими отделами центральной нервной системы. Основные принципы миелоархитектонической классификации предложены немецкими учёными Сесиль и Оскар Фогт, выделившие около 100 миелоархитектонических полей коры.

 

Глиоархитектоника – учение о строении и пространственном расположении клеток глии. Нейроглия занимает 1/2 массы головного мозга. По количеству она в 10 раз превосходит нейроциты. Различают макроглию и микроглию. Клетки глии выполняют ряд важнейших функций:

1) опорная


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-28; Просмотров: 858; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.083 с.)
Главная | Случайная страница | Обратная связь