Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ЭЛЕКТРОМАГНИТНЫЕ ПРОМЕЖУТОЧНЫЕ РЕЛЕ



а) Назначение реле и требования к ним

Промежуточные реле являются вспомогательными и приме­няются, когда необходимо одновременно замыкать или размыкать несколько независимых цепей или когда требуется реле с мощ­ными контактами для замыкания и размыкания цепи с большим током.

Простейший пример использования промежуточного реле всхемах защиты приведен на рис. 2-13, а в.

Промежуточные реле по способу включения подразделяются на реле параллельного (рис. 2-13, а) и последова­тельного (рис. 2-13, б) включения.

Обмотки первых включаются на полное напряжение источника питания, а вторых — последовательно с катушкой отключения выключателя или какого-либо другого аппарата или реле на ток цепи.

Кроме того, выпускаются реле с дополнительными удержива­ющими катушками, например реле параллельного включения с удерживающей обмоткой, включаемой последовательно в управля­емую контактами реле цепь (рис. 2-13, в). Такое реле, подействовав от кратковременного импульса, поданного в параллельно вклю­ченную обмотку, остается в сработанном состоянии под действием тока удержания, пока не завершится операция.

Для одновременного замыкания нескольких не связанных друг с другом цепей промежуточные реле имеют несколько контактов. Мощность контактов должна быть достаточной для замы­кания и размыкания цепей защиты (обычно потребляющих 50— 200 Вт) или цепей управления выключателей (1500—2000 Вт).

Потребление обмоток реле параллельного включения стремятся ограничить до 3—6 Вт, с тем чтобы их цепь могли замыкать реле с маломощными контактами.

Потребление обмоток реле последовательного включения выбирается из условия минимального падения напряжения в сопротивлении обмотки этого реле, которое допускается не более 5—10% нормального напряжения источника оперативного тока.

Промежуточные реле должны надежно действовать не только при нор­мальном напряжении, но и при возможном в условиях эксплуатации его понижении, достигающем 15—20%.

С учетом запаса напряжение срабатывания реле параллельного вклю­чения принимается 60—70% номинального значения.

К коэффициенту возврата промежуточных реле не предъявляется ка­ких-либо требований, так как их возврат происходит при отсутствии тока в обмотке реле.

В схемах защиты промежуточные реле вносят нежелательное замедление, поэтому, за исключением особых случаев, их время должно быть очень малым, особенно когда они применяются в быстродействующих защитах.

Быстродействующие промежуточные реле должны работать со временем не более 0, 01—0, 02 с. Время срабатывания обычных промежуточных реле колеблется в зависимости от конструкции от 0, 02 до 0, 1 с.

б) Конструкции промежуточных реле постоянного тока [Л. 10]

Большинство промежуточных реле выполняется при помощи системы с поворотным якорем, позволяющей создавать большую электромагнитную силу при относительно малом потреблении и Удобной для изготовления многоконтактных реле. Применяются также системы с втягивающимся якорем. На рис. 2-14 показаны образцы промежуточных реле. Реле типа РП-210 (рис. 2-14, а) имеют четыре контакта. Время их срабатывания равно 0, 01 с, потребление 5—8 Вт, разрывная мощность контактов 50 Вт. Широкое распространение получили кодовые реле (КДР) (рис. 2-14, б). Время срабатывания этих реле равно 0, 01-0, 02 с, потребление обмотки не более 3 Вт.

Реле последовательного включения отличаются от реле парал­лельного включения лишь обмоточными данными.

 

 


в) Время действия промежуточных реле

 

Таким образом, полное время действия реле tр складывается из времени нарастания тока в обмотке якоря tН до значения Iс.р и времени движения якоря tД:

tр = tН + tД (2-14)

Из диаграммы на рис. 2-15 следует, что tН зависит от скорости нарастания тока Iр, которая определяется постоянной времени Т; величины тока Iс.р, определяемой силой противодействующей пружины реле; величины установившегося тока Iр у.

Составляющая tД зависит от величины хода якоря и скорости его перемещения.

Абсолютное значение tД невелико (составляет тысячные доли секунды), поэтому у реле постоянного тока время действия прак­тически определяется tН.

Для получения быстродействующих промежуточных реле нужно уменьшать Т, ослаблять противодействующую пружину реле и увеличивать кратность тока к = Iр/ Iс.р.

При включении реле в его сердечнике появляются вихревые токи, замедляющие нарастание магнитного потока и увеличиваю­щие, таким образом, время tН. Поэтому у быстродействующих реле магнитная система выполняется из шихтованной стали.

Уменьшение tД в быстродействующих реле достигается в ос­новном путем облегчения подвижной системы и уменьшения трения.

К числу быстродействующих реле, применяемых в отечествен­ных защитах, относятся реле типа РП-210—РП-215, кодовые роле КДР-1 и реле МКУ [Л. 101]; их время действия tр = 0, 01 с.

г) Промежуточные реле постоянного тока замедленного дей­ствия

В ряде случаев в схемах защиты и автоматики требуются про­межуточные реле, замыкающие или размыкающие свои контакты с некоторым замедлением. Замедление в таких реле получается за счет повышения составляющей tН в (2-14) путем увеличения постоянной времени Т обмотки.

Замедленное действие реле при втягивании якоря достигается размещением на магнитопроводе 3 короткозамкнутой обмотки 2, выполняемой в виде медной цилиндрической гильзы, или медных шайб, поверх которых наматывается основная обмотка 1 (рис.2-16).

При включении обмотки 1 на напряжение Uр магнитный по­ток Ф1 в магнитопроводе реле устанавливается не сразу..

В момент включения в обмотке 2 возникает ток I2, создающий магнитный поток Ф2, который противодействует нарастанию тока в обмотке 1. В результате этого скорость нарастания тока в об­мотке реле уменьшается (рис. 2-17), а время нарастания тока tН увеличивается.

Для увеличения времени действия реле необходимо располагать об­мотки 1 и 2 концентрически так, чтобы весь магнитный поток Ф2 обмотки 2 пронизывал обмотку 1, и увеличивать магнитный поток обмотки 2. Для этого следует увеличивать сечение медной гильзы (отчего возрастает ток I2) и уменьшать сопротивление магнитопровода реле.

Практически выдержка времени на втягивание якоря в про­межуточных реле с короткозамкнутой обмоткой относительно невелика и не превосходит 0, 5 с.



 


Замедленное действие при отпадании якоря также может быть получено при помощи короткозамкнутой обмотки 2 (рис. 2-16).

В момент отключения тока в обмотке 1 магнитный поток Ф1 начинает затухать (рис. 2-18).

При этом в обмотке 2 возникает ток I2, создающий магнитный по­ток Ф2, который противодействует исчезновению потока Ф1 и поэтому совпадает с ним по направлению 1. Таким образом, несмотря на пре­кращение тока I1 в магнитопроводе реле продолжает существовать сум­марный поток р = 1 + 2 поддерживаемый в основном током I2. Ток I2, а вместе с ним поток Ф2 и, следовательно, поток Фр посте­пенно затухают (рис. 2-18).

При отсутствии обмотки 2 (рис. 2-16) затухание потока Фр в маг­нитопроводе происходило бы значи­ тельно быстрее, так как в этом слу­чае он поддерживался бы только вихревыми токами, возникаю­щими в стали магнитопровода, влияние которых незначительно.

1 В этом случае ток I2 и поток Ф2 направлены противоположно показан­ному на рис. 2-16.

 

Чем больше постоянная времени короткозамкнутой обмотки Т2 = L2/r2, тем медленнее будет спадать магнитный поток Ф2. Через время t'Н магнитный поток Фр снизится до величины Фвоз; при этом сила пружины превзойдет электромагнитную силу и якорь реле начнет отходить. Спустя время t'Д он переместится в конечное положение. Таким образом, полное время отпадания реле равно t'Н + t'Д, при этом t'Д « t'Н.

Увеличение t'Н достигается уменьшением Фвоз, увеличением на­чального значения Ф1 = Фр.у (рис. 2-18) и снижением скорости затухания Ф2; для последнего необходимо повышать постоянную времени короткозамкнутой обмотки Т2.

Практически для увеличения времени замедления на отпада­ние якоря реле следует уменьшать зазор (при втянутом якоре), увеличивать размеры гильз, намагничивающую силу обмотки 1 и ослаблять противодействующую пружину 4 (рис. 2-16).

Отечественные заводы изготовляют реле типов РП-250, КДР-3 РЭВ-81, РЭВ-810, РЭВ-880, имеющие замедленный возврат [Л. 101].

Замедление с помощью контура С и r. Замедление при раз­мыкании цепи промежуточных реле может достигаться при помощи схем, состоящих из резистора r (активного сопротивления) и кон­денсатора С, как показано на рис. 2-19, а, б. В схеме.на рис. 2-19, а конденсатор С разряжается на обмотку П при размыкании контактов К1, благодаря чему время отхода якоря увеличивается. Резистор r ограничивает ток через конденсатор в момент вклю­чения реле П. При замыкании контактов К1 на обмотку реле П подается полное напряжение, и поэтому нарастание тока в ней определяется только ее параметрами.

В схеме на рис. 2-19, б действие реле замедляется как при замыкании, так и при размыкании цепи обмотки реле П. В момент замыкания контактов К1 происходит заряд конденсатора С. В нем появляется ток IС, создающий повышенное падение напряжения на сопротивлении r. Вследствие этого напряжение на зажимах обмотки реле II уменьшается: UП = U — (IС + IП) r, где U — напряжение источника питания; UП — напряжение на обмотке реле П; IС и Iп — токи в конденсаторе и обмотке реле. Пропор­ционально этому уменьшается и ток в обмотке П.

По окончании заряда конденсатора прохождение тока пре­кратится и на обмотке реле II установится нормальное напряже­ние UП = U IПr. При размыкании контактов К1 конденса­тор С разряжается на обмотку реле П, удерживая реле в сра­ботанном состоянии до тех пор, пока ток в обмотке не снизится до значения Iвоз. Чем больше емкость С, тем больше замедлится действие реле.

Недостатком замедленных реле является значительный разброс их времени действия, в частности за счет колебания уровня на­пряжения источника оперативного тока.

 

УКАЗАТЕЛЬНЫЕ РЕЛЕ

Указательные реле служат для фиксация, действия защиты в целом или каких-либо ее элементов. На рис. 2-20 показано указательное реле 1, сигнализирующее действие защиты на от­ключение выключателя. При срабатывании защиты по обмотке реле 1 проходит ток, приводящий реле 1 в действие.

Ввиду кратковременности прохождения тока в обмотке ука­зательных реле они выполняются так, что сигнальный флажок и контакты реле остаются в сработанном состоянии до тех пор, пока их не возвратит на место обслуживающий персонал.

Указанные реле изготовляются для последовательного (рис. 2-20, а) и параллельного (рис. 2-20, б) включения. Реле последовательного включения более удобны и поэтому имеют весьма широкое применение. Общий вид указательного реле типа РУ-21 приведен на рис. 2-21.

При появлении тока в обмотке 3 якорь реле 5 притягивается, и освобождает флажок 9. Последний падает под действием соб­ственного веса, принимая вертикальное положение. В этом положении флажок виден через прозрачный кожух 2. Возврат флажка в начальное положение производится кнопкой 10.

 

РЕЛЕ ВРЕМЕНИ

а) Назначение и основные требования

Реле времени служит для искусственного замедления действия устройств релейной защиты и электроавтоматики.

На схеме рис. 2-22 показано применение реле времени в за­щите. При замыкании контактов токового реле 1 плюс оператив­ного тока подводится к обмотке реле времени 2, которое спустя определенный интервал времени замы­кает контакты и производит отключение выключателя. Время, проходящее с мо­мента подачи напряжения на обмотку реле времени до замыкания его кон­тактов, называется выдержкой времени реле.

Основным требованием, предъявляе­мым к реле времени, применяемым в схемах релейной защиты, является точность. Погрешность во времени действия реле не должна превосходить ±0, 25 с, а в ряде случаев ±0, 06 с. В схемах сигнализации и некоторых устройствах автоматики допускается меньшая точность работы реле времени.

 

Реле времени должно надежно срабатывать начиная с 80% номинального напряжения, и его выдержка времени не должна зависеть от возможных в эксплуатации колебаний оперативного напряжения. Потребление обмотки современных реле времени колеблется от 20 до 30 Вт.

Для быстрой готовности к повторному действию реле времени должно иметь мгновенный возврат после отключения его катушки от источника оперативного тока.

б) Конструкции реле времени

Реле времени имеют много конструктивных разновидностей, но принципы их устройства однородны и могут быть рассмотрены на примере конструкции, изображенной на рис. 2-23.

При появлении тока в обмотке 1 якорь 2 мгновенно втяги­вается, освобождая рычаг 4 с зубчатым сегментом 5. Под дейст­вием ведущей пружины 6 рычаг 4 приходит в движение, которое однако, не является свободным, так как оно замедляется спе­циальным устройством выдержки времени 7. Через некоторое время tр, зависящее от расстояния l (или угла a; и скорости движения wр рычага 4, последний переместится на угол a и замкнет контакты реле 8. Таким образом реле сработает с выдержкой времени tр = a/wр.

Устройство выдержки времени может выполняться различ­ными способами; в современных отечественных конструкциях оно осуществляется с помощью часового

механизма, основным элементом которо­го является анкерное уст­ройство.

При исчезновении тока в реле якорь и рычаг 4 должны мгновенно возвратиться в на­чальное положение под дей­ствием возвратной пружи­ны 3. Это обеспечивается с помощью храпового механизма или фрикционного устройства, обладающих свободным расцеплением при обратном ходе сегмента 5.

Регулирование выдержки времени осуществляется изменением угла a путем перемещения контактов реле 8. В некоторых конст­рукциях предусматривается мгновенный контакт 9, позволяющий замыкать цепь с малой, обычно нерегулируемой выдержкой вре­мени (около 0, 15—0, 2 с).

Для уменьшения размеров реле катушка реле времени не рас­считывается на длительное прохождение тока. Поэтому реле, предназначаемые для длительного включения под напряжение, выпол­няются с добавочным сопротивлени­ем rд, включаемым последовательно с обмоткой реле, как показано на рис. 2-24. Нормально сопротивле­ние rд зашунтировано размыкающим­ся мгновенным контактом реле. После срабатывания реле этот контакт раз­мыкается и сопротивление rд вводится в цепь реле, ограничивая проходящий в ней ток до ве­личины, допустимой по условиям нагрева и достаточной для удержания реле в сработанном состоянии.

Отечественные заводы выпускают реле постоянного тока типов ЭВ-110, ЭВ-120, ЭВ-130,

ЭВ-140 и переменного тока ЭВ-210, ЭВ-220, ЭВ-230, ЭВ-240 [Л. 10, ЮН. Устройство этих реле пока­зано на рис. 2-25, а.

В этой конструкции роль рычага 4 (рис. 2-23) выполняет сек­тор 10, приводимый в движение ведущей пружиной 11. Сектор М через ведущее зубчатое колесо 13 приводит в движение подвижный контакт реле 22 и фрикционное сцепление 14, показанное отдельно на рис. 2-25, б и в. Фрикционное сцепление связывает подвиж­ную систему реле с часовым механизмом. Через зубчатые колеса 15, 16, 17 и 18 движение передается на анкерное колесо 19. Ско­рость вращения последнего ограничивается колебательным дви­жением анкерной скобы 20, которое зависит от ее момента инер­ции, определяемого грузиками 21. Выдержка времени изменяется положением неподвижного контакта 23.

Реле времени ЭВ-133 выполняются термически стойкими по схеме на рис. 2-24.

Кроме рассмотренных электромагнитных реле времени при­меняются реле времени, выполняемые с помощью синхронных микродвигателей, и реле с контуром из емкости и активного со­противления (см. § 4-8 и 11-17, в).

 

 

 

ПОЛЯРИЗОВАННЫЕ РЕЛЕ

Поляризованные реле являются разновидностью электромаг­нитных конструкций. В отличие от рассмотренных выше электро­магнитных реле якорь поляризованного реле находится под воз­действием двух магнитных потоков, из которых один создается током, питающим обмотку реле, а второй — постоянным магни­том. Магнитный поток обмотки называется рабочим, а по­стоянного магнита — поляризующим. Поляризованные реле выполняются в двух вариантах: с дифференциальной маг­нитной системой и мостовой.

Обе конструкции состоят из сердечника 1, обмотки 2, постоян­ного магнита 3, якоря 4 и контактной системы 5 (рис. 2-26).

Рассмотрим принцип действия реле на примере более простой дифференциальной системы (рис. 2-26). Поляризующий магнит­ный поток Фп постоянного магнита выходит из северного полюса N и разветвляется на две части ФПа и ФПб, замыкающиеся через воздушные зазоры dа и dб и соответствующие половины сердеч­ника 1. Обмотка 2, обтекаемая током Iр, создает рабочий магнит­ный поток Фр, который замыкается по сердечнику 1 и по воздуш­ным зазорам dа и dб.

Для простоты рассмотрения часть магнитного потока, ответв­ляющаяся через якорь, не учитывается. В воздушном зазоре dа магнитные потоки Фп и Фр суммируются, а в dб вычитаются, образуя результирующие магнитные потоки:

Под воздействием магнитного потока Фа якорь притягивается к левому полюсу a с силой Fa=kФ2а. Силе Fа противодействует сила стремящаяся притянуть якорь к правому полюсу d.

При определенном токе IрIс.р магнитный поток Фа стано­вится больше магнитного потока Фб, сила Фа> Фди якорь откло­няется влево, к полюсу a, замыкая контакты 5.

При изменении направления тока Iр поток Фр также меняет свое направление, вследствие чего в зазоре dа возникает разность в магнитных потоков, а в зазоре dб их сумма. Тогда при IрIс.р поток Фб > Фа, сила Fб~> Fа иякорь отклоняется вправо. Таким образом, благодаря наличию поляризующего потока реле стано­вится направленным и реагирует не только на значение тока, но и на его направление (полярность).

Аналогичным образом работает реле и с мостовой магнитной системой, приведенное на рис. 2-26, б.

При питании реле переменным током якорь реле вибрирует, следуя за изменением направления тока. По этой причине поляризованные реле не пригодны для работы на перемен­ном токе.

Поляризованные реле могут выполняться с односторонним и двусто­ронним действием, с фиксацией и без фиксации начального положения якоря. Реле одностороннего действия с фиксацией начального положения якоря показано на рис. 2-26, а, б. У этого реле упоры 6, ограничивающие ход якоря, устанавливаются так, чтобы при любом положении якоря преобла­дало влияние одного из полюсов, например правого б. Для этой цели зазор dа взят больше dб, Тогда при отсутствии тока Iр поляризующий магнитный поток ФПб > Фпа, соответственно сила Fб > Fа иякорь реле прижимается к правому упору под действием преобладающей силы Fб. При появлении Iр > Iс.р якорь отклоняется влево, замыкая контакты реле. После исчезновения тока Iр якорь возвращается под действием поляризую­щего поля в начальное положение.

Такая регулировка называется настройкой с «преобладанием». Реле подобного типа наиболее часто применяется в схемах защиты.

Если упоры 6 расположить симметрично по отношению к среднему по­ложению якоря в зазоре (рис. 2-26, в), то такая регулировка называется нейтральной. В зависимости от направления Iр якорь отклоняется вправо или влево, замыкая соответствующие контакты реле. При исчезно­вении Iр якорь остается в том положении, в каком он находился при дей­ствии Iр. Следовательно, такое реле работает как реле двустороннего дей­ствия, но не имеет фиксированного начального положения якоря.

Поляризованные реле обладают важными преимуществами, к которым следует отнести: 1) высокую чувствительность и малое потребление, достигающее при минимальном токе срабатывания и зазоре между контактами около 0, 5 мм, примерно 0, 005 Вт; 2) высокую кратность тока термической стойкости, равную (20 ÷ 50) Iс.рмин, у обычных электромагнитных реле термическая кратность не превышает 1, 5 Iс.р мин; 3) быстроту действия, которая достигает 0, 005 с.

Недостатками поляризованных реле являются: малая мощ­ность контактов; небольшой зазор между ними, от 0, 1 до 0, 5 мм, и относительно невысокий коэффициент возврата.

Поляризованные реле применяются в схемах релейной защиты как вспомогательные реле постоянного тока при необходимости быстродействия и высокой чувствительности, а также в качестве реагирующих (исполнительных) органов в схемах реле на вы­прямленном токе.

ИНДУКЦИОННЫЕ РЕЛЕ

а) Принцип действия

На рис. 2-27 показан принцип выполнения индукционных реле. Реле состоит из подвижной системы 3, расположенной в поле двух магнитных потоков Ф1 и ФII. Магнитные потоки создаются токами, проходящими по обмоткам неподвижных электромагни­тов 1 и 2. Подвижная система выполняется в виде медного илиалюминиевог о диска или цилинд­ра

(барабанчика), закрепленного на оси, которая может вращаться. При вращении против часовой стрелки подвижная система пре­одолевает момент пружины 5 и замыкает контакты 4.

Обмотки реле 1 и 2 питаются переменными (синусоидальными) токами I1 и I2, которые создают переменные магнитные потоки Ф1 и ФII, показанные на рис. 2-27. Пренебрегая потерями на намаг­ничивание, считают, что потоки Ф1 и ФII совпадают по фазе с создающим их током, как изо­бражено на векторной диаграмме (рис. 2-28).

Пронизывая подвижную си­стему 3, магнитный поток Ф1 наводит в ней э. д. с. ЕД1 = , аналогично поток ФII создает э.д.с. ЕД2 = . Согласно закону индукции наведенные э. д. с. отстают по фазе на 90° от вызвавших их магнитных пото­ков (рис. 2-28). Под действием э. д. с. ЕД1 и ЕД2 в подвижной системе возникают вихревые токи IД1 и IД2, замыкающиеся вокруг оси индуктирующего их магнитного потока. Положитель­ные направления IД1 и IД2, определенные с помощью правила «буравчика» по п о л о ж и т е л ь н о м у направлению пото­ков Ф1 и ФII, показаны на рис. 2-27. Вследствие малой величины индуктивного сопротивления контура вихревых токов они при­нимаются совпадающими по фазе с соответствующей э. д. с. (рис. 2-28).

Из теории электротехники известно, что между магнитным потоком и током, находящимся в его поле, возникают электро­магнитные силы взаимодействия. В рассматриваемой конструкции возникают две силы: Fэ1, обусловленная взаимодействием магнитного потока Ф1 и тока IД2, и Fэ2, вызванная взаимодействием ФII с IД1 (рис. 2-27).

Как известно, сила взаимодействия между магнитным потоком и контуром тока, индук­тированного этим потоком, равна нулю, при условии, что магнитный поток создает равно­мерное магнитное поле. В индукционных реле это условие выполняется, и поэтому силы вза­имодействия между Ф1 и IД1 и ФII и IД2 отсутствуют. Направление сил FЭ1 и FЭ2 для положительного значения потоков и токов оп­ределяется по правилу «левой руки» и пока­зано на рис. 2-27. Можно доказать, что мгно­венное значение сил FЭ1 и FЭ2 меняет свой знак в течение периода Т = 1/f 4 раза, поэтому по­ведение реле (вращение подвижной системы) зависит от знака среднего значения сил FЭ1, и FЭ2. Знак и направление каждой силы определяется углом сдвига фаз между магнитным потоком и взаимодействующим с ним то­ком Iд. Силы FЭ1 и FЭ2 образуют результирующую электромаг­нитную силу Fэ, равную их алгебраической сумме Fэ = FЭ1 + FЭ2 - Результирующая сила Fэ создает вращающий момент Мэ = Fэd, где d — плечо силы Fэ. Электромагнитная сила и момент (Fэ и Мэ) приводят в движение подвижную систему 3, которая в зависимости от знака Мэ замыкает или размыкает контакты реле 4.

Из сказанного следует, что принцип работы индукционных реле основан на взаимодействии двух магнитных потоков с вихре­выми токами, индуктируемыми в подвижной системе реле.

б) Электромагнитная сила и ее момент

Соответственно электромагнитный момент

Вывод уравнений (2-16) и (2-17) приводится ниже.

Значение и знак электромагнитной силы Fэ выражаются через магнитные потоки Ф1 и ФII, угол сдвига фаз между ними ψ и частоту переменного тока f уравнением

 


 

 

Среднее значение силы взаимодействия между магнитным цотоком Ф и током I, находящимся в поле этого потока:  


 

 

Анализируя выражение электромагнитного момента (2-17), можно установить следующее:

1. Для получения электромагнитного момента конструкция реле должна обеспечивать создание не менее двух переменных магнитных потоков (Ф1 и ФII), пронизывающих подвижную си­стему в разных точках и сдвинутых по фазе на угол ψ ≠ 0.

2. Величина момента М3 пропорциональна амплитудам маг­нитных потоков Ф1 и ФII и их частоте f и зависит от сдвига фаз ψ между потоками.

Реле имеет наибольший момент при сдвиге фаз магнитных потоков на 90°. При ψ = 0 реле не может работать, так как М3=0.

3. Знак момента зависит от sin ψ. Иначе говоря, он зависит от сдвига фаз ψ между магнитными потоками Ф1 и ФII или создающими их токами I1 и I2. При значениях ψ в пределах от 0 до 180° момент Мэ положителен, при этом магнитный поток ФII опережает поток Ф1 а сила Fэ направлена от оси опережающего магнитного потока ФII к оси отстающего Ф1. При — ψ в пределах от 180 до 360° момент Мэ отрицателен. В этом случае поток ФII отстает от Ф1, а сила Fэ направлена в обратную сторону — от оси Ф1 к оси ФII. Таким образом, результирующая сила Fэ всегда направлена от оси опережающего к оси отстающего магнитного потока.

4. На индукционном принципе могут выполняться только реле переменного тока. Это объясняется тем, что токи в диске или цилиндре индуктируются при условии, что электромагниты питаются переменным током. Индукционный принцип получил весьма широкое распространение. На этом принципе выпол­няются реле тока, направления мощности и многие другие виды реле.


Поделиться:



Популярное:

  1. Выбор реле защиты от недопустимого тока возбуждения
  2. Законы автоматического регулирования в АСУТП. Типы релейного регулирования. Особенности релейного регулирования охлаждением и нагреванием. Применение гистериза при регулировании и сигнализации.
  3. Изображение схем релейной защиты на чертежах
  4. ИНДУКЦИОННЫЕ РЕЛЕ НАПРАВЛЕНИЯ МОЩНОСТИ
  5. ИНДУКЦИОННЫЕ РЕЛЕ ТОКА И НАПРЯЖЕНИЯ
  6. Камера над обратным клапаном пневмореле
  7. Контакторы электромагнитные МК
  8. МТЗ с пуском (блокировкой) от реле минимального напряжения
  9. На какой высоте от верха головки рельса пересекаемых неэлектрифицированных железнодорожных путей должны находиться воздушные линии связи при максимальной стреле провеса?
  10. Назначение и принцип работы реле дифференциальной защиты
  11. Назначение и принцип работы реле контроля напряжения
  12. Неионизирующие электромагнитные поля и излучения


Последнее изменение этой страницы: 2016-05-29; Просмотров: 2932; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.079 с.)
Главная | Случайная страница | Обратная связь