Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
СПОСОБЫ ВКЛЮЧЕНИЯ РЕЛЕ НА ТОК И НАПРЯЖЕНИЕ СЕТИ
Обмотки реле могут включаться на ток и напряжение сети непосредственно или через измерительные трансформаторы тока и напряжения (рис. 1-8). Реле первого типа называются п е р в и ч н ы м и, второго типа — вторичными.
Во всех остальных случаях применяются вторичные реле. СПОСОБЫ ВОЗДЕЙСТВИЯ ЗАЩИТЫ НА ВЫКЛЮЧАТЕЛЬ Существует два способа воздействия защиты на отключение выключателя: прямой и косвенный. Защита со вторичными реле прямого действия 1 показана на рис. 1-9. Реле 1 срабатывает, когда электромагнитная сила Fэ, создаваемая обмоткой реле, станет больше силы Fп противодействующей пружины. При срабатывании реле его подвижная система 2 воздействует непосредственно (прямо) на расцепляющий рычаг 3 выключателя, после чего выключатель отключается под действием пружины 4. Реле прямого действия устанавливаются непосредственно в приводе выключателя, поэтому их часто называют встроенными. Защита с вторичным реле косвенного действия изображена на рис. 1-10. При срабатывании реле 1 его контакты замыкают цепь обмотки электромагнита 2, называемого катушкой отключения выключателя. Под действием напряжения U, подводимого к зажимам этой цепи от специального источника, в катушке отключения 2 появляется ток, сердечник 3 катушки отключения преодолевает сопротивление Fп пружины 5 и, втягиваясь, освобождает защелку 4, после чего выключатель отключается под действием пружины 6. После отключения выключателя ток в обмотке исчезает и контакты реле размыкаются. Чтобы облегчить их работу по размыканию цепи, в. которой проходит ток катушки отключения, предусмотрен вспомогательный блокировочный контакт БК, который размывает цепь катушки отключения еще до того, как начнут размыкаться контакты реле.
Как видно из схемы на рис. 1-10, для защиты с реле косвенного действия необходим вспомогательный источник напряжения — источник оперативного тока. Защита с реле прямого действия не требует источника оперативного тока, но реле этой защиты должны развивать большие усилия для того, чтобы непосредственно расцепить механизм выключателя. Поэтому реле прямого действия не могут быть очень точными и имеют большое потребление мощности. Усилия, развиваемые реле косвенного действия, могут быть незначительными, поэтому они отличаются большей точностью и малым потреблением. Кроме того, в защитах, которые состоят из нескольких реле, взаимодействие между ними проще осуществляется при помощи оперативного тока, а не механическим путем. В силу изложенного наиболее широко применяется защита со вторичными реле косвенного действия. Для простых токовых защит имеются вполне надежные конструкции токовых реле прямого действия, которые часто применяются в сетях среднего напряжения 6, 10, 30 кВ там, где отмеченные недостатки защит прямого действия не являются существенными.
ИСТОЧНИКИ ОПЕРАТИВНОГО ТОКА а) Назначение и общие требования Оперативным током называется ток, питающий цепи дистанционного управления выключателями, оперативные цепи релейной защиты, автоматики, телемеханики и различные виды сигнализации. Питание оперативных цепей и особенно тех ее элементов, от которых зависит отключение поврежденных линий и оборудования, должно отличаться особой надежностью. Поэтому главное требование, которому должен отвечать источник оперативного тока, состоит в том, чтобы во время к.з. и при ненормальных режимах в сети напряжение источника оперативного тока и его мощность имели достаточную величину как для действия вспомогательных реле защиты и автоматики, так и для надежного отключения и включения соответствующих выключателей. Для питания оперативных цепей применяются источники постоян ного и переменного тока. б) Постоянный оперативный ток В качестве источника постоянного тока используются аккумуляторные батареи с напряжением 110—220 В, а на небольших подстанциях 24—48 В, от которых осуществляется централизованное питание оперативных цепей всех присоединений (рис. 1-11). Для повышения надежности сеть постоянного тока секционируется на несколько участков, имеющих самостоятельное питание от сборных шин батареи. Самым ответственным участком являются цепи защиты, автоматики и катушек отключения, питаемые от шинок управления ШУ. Вторым очень важным участком являются цепи катушек включения, питаемые от отдельных шинок ШВ вследствие больших токов (400—500 А), потребляемых катушками включения масляных выключателей. И, наконец, третьим, менее ответственным участком является сигнализация, питающаяся от шинок ШС. Остальные потребители постоянного тока (аварийное освещение, двигатели собственных нужд) питаются по отдельной сети. Защита оперативных цепей от к. з. осуществляется предохранителями или специальными автоматами (реагирующими на увеличение тока). Для своевременного выявления неисправностей в оперативных цепях состояние отдельных элементов цепи контролируется с помощью специальных устройств. Исправность предохранителей контролируется реле РС (рис. 1-11). Целость цепи отключения КО и блок-контактов БК обычно контролируется реле РК, дающим сигнал при обрыве цепи (рис. 1-12, а). В сетях постоянного тока возможны замыкания па землю. В случае замыканий на землю в точках Кх и К2 (рис. 1-12, б) контакты реле РЗ шунтируются и в катушке отключения КО появляется ток, под действием которого выключатель может отключиться. Чтобы предупредить подобные отключения, применяется контроль за появлением «земли» на постоянном токе. Контроль осуществляется при помощи вольтметров Vх и V2 и сигнального реле Рк, как показано на рис. 1-11. Аккумуляторные батареи обеспечивают питание оперативных цепей в любой момент времени с необходимым уровнем напряжения и мощности независимо от состояния основной сети и поэтому являются самым надежным источником питания. В то же время аккумуляторные батареи значительно дороже других источников оперативного тока, для них требуются зарядные агрегаты, специальное помещение и квалифицированный уход. Кроме того, из-за централизации питания создается сложная, протяженная и дорогостоящая сеть постоянного тока. В связи с этим за последнее время получает применение и переменный оперативный ток. в) Переменный оперативный ток Для питания оперативных цепей переменным током используется ток или напряжение сети. В соответствии с этим в качестве источников переменного оперативного тока служат трансформаторы тока, трансформаторы напряжения и трансформаторы собственных нужд. Трансформаторы тока являются весьма надежным источником питания оперативных цепей для защит от к. з. При к. з. ток и напряжение на зажимах трансформаторов тока увеличиваются, поэтому в момент срабатывания защиты мощность трансформаторов тока возрастает, что и обеспечивает надежное питание оперативных цепей. Однако трансформаторы тока не обеспечивают необходимой мощности при повреждениях и ненормальных режимах, не сопровождающихся увеличением тока на защищаемом присоединении. Поэтому их нельзя использовать для питания защит от замыкания на землю в сети с изолированной нейтралью, защит от витковых замыканий в трансформаторах и генераторах или защит от таких ненормальных режимов, как повышение или понижение напряжения и понижение частоты. Трансформаторы напряжения и трансформаторы собственных нужд непригодны для питания оперативных цепей защит от к. з., так как при к. з. напряжение в сети резко снижается и может в неблагоприятных случаях становиться равным нулю. В то же время при повреждениях и ненормальных режимах, не сопровождающихся глубокими понижениями напряжения в сети, трансформаторы напряжения и трансформаторы собственных нужд могут использоваться для питания таких защит, как, например, защиты от перегрузки, от замыканий на землю, повышения напряжения и т. д. Заряженный конденсатор. Помимо непосредственного использования мощности трансформаторов тока и напряжения можно использовать энергию, накопленную в предварительно заряженном конденсаторе. Разрядный ток конденсатора, имеющий необходимые величину и продолжительность, может питать оперативную цепь в момент Действия защиты независимо от характера повреждения или ненормального режима в сети. Предварительный заряд конденсатора обычно осуществляется в нормальном режиме от напряжения сети. При исчезновении напряжения на подстанции запасенная конденсатором энергия сохраняется. Поэтому заряженный конденсатор может использоваться также для питания защит и автоматов, которые должны работать при исчезновении напряжения на подстанции. Питание цепей управления выключателей. Дистанционное управление выключателями и их автоматическое включение от АПВ или АВР должно производиться при любых нагрузках на присоединении и при отсутствии напряжения на шинах подстанции, чего не обеспечивают трансформаторы тока. Поэтому питание цепей дистанционного управления, АПВ и АВР производится от трансформаторов напряжения, трансформаторов собственных нужд и заряженных конденсаторов. Чтобы обеспечить производство операции по включению при отсутствии напряжения на шинах, трансформаторы, питающие цепи управления, подключаются к линиям, питающим подстанцию
основной составляющей которой является мощность, затрачиваемая приводом на отключение и включение выключателей. Наибольшие затруднения из-за недостаточной мощности возникают при применении трансформаторов тока и трансформаторов напряжения. Учитывая, что включение и отключение выключателей является кратковременной операцией, можно допускать значительные перегрузки измерительных трансформаторов без ущерба для них. На практике применяется схема питания от трансформаторов тока, показанная на рис. 1-13. В нормальном режиме катушка отключения выключателя 2 зашунтирована контактами реле 1 и ток в ней отсутствует. При к. з. реле 1 срабатывает, его контакты размыкаются и ток трансформаторов тока поступает в катушку отключения 2, приводя ее в действие. Практическое применение получила схема, приведенная на рис. 4-18—4-20, в которой используются реле со специальными мощными переключающими контактами.
Для ограничения величины вторичного тока трансформатор ПНТ выполняется насыщающимся. Чтобы избежать появления опасных пиков напряжений, во вторичной цени ПНТ установлен конденсатор С, сглаживающий кривую вторичного напряжения. Напряжение на выходе блока С/в определяется током и напряжением сети. При к. з. необходимое значение выходного напряжения обеспечивается за счет трансформаторов тока, а при повреждениях и ненормальных режимах с малым током — за счет трансформатора напряжения. Таким образом, комбинированный блок может питать защиты от всех видов повреждения и ненормальных режимов, и в то же время позволяет иметь на выключателе только одну катушку отключения. Блоки питания особенно удобны для питания защит, имеющих сложную схему оперативных цепей, состоящую из большого числа вспомогательных реле. Схемы с питанием от трансформаторов напряжения или собственных нужд показаны на рис. 1-15, а, б. Схема на рис. 1-15, а применяется только для питания оперативных цепей защит. Для питания цепей управления и включения обычно используется выпрямленный ток (рис. 1-15, б), выпрямление осуществляется селеновыми выпрямителями 2: трансформатор 1, питающий цепи управления, необходимо подключать к питающей линии Л1, При включении Л1 со стороны питающей подстанции А трансформатор 1 получает напряжение, после чего появляется возможность проведения операций на подстанции В, не имеющей напряжения. Схема с питанием от заряженного конденсатора. На рис. 1-16 дана упрощенная схема питания оперативных цепей от заряженного конденсатора. Конденсатор 1 питается от трансформатора напряжения через выпрямитель 2. В нормальном режиме конденсатор заряжен. При действии защиты он замыкается на катушку отключения, питая ее током разряда. Рассмотренные схемы питания оперативных цепей от источников переменного тока отличаются простотой и достаточной надежностью [Л. 8]. Однако вопросы применения оперативного переменного тока для сложных защит мощных выключателей, а также на больших электростанциях и подстанциях еще недостаточно разработаны, что и ограничивает применение источников переменного тока. В СССР питание оперативных цепей от источников переменного тока получило широкое применение в электрических сетях 6, 10 и 35 кВ и отчасти 110 кВ [Л. 24, 80]. ГЛАВА ВТОРАЯ РЕЛЕ Популярное:
|
Последнее изменение этой страницы: 2016-05-29; Просмотров: 1704; Нарушение авторского права страницы