Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ЗАЩИТА СИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ



а) Некоторые особенности синхронных электродвигателей

При рассмотрении защиты синхронных электродвигателей необходимо учитывать их особенности. Отметим наиболее важные из них:

1. Пуск большинства синхронных электродвигателей производится при отсутствии возбуждения прямым включением в сеть. Для этой цели на роторе синхронного электродвигателя предусматривается дополнительная короткозамкнутая обмотка, выполняющая во время пуска ту же роль, что и в короткозамкнутом асинхронном электродвигателе. Когда скольжение двига­теля приближается к нулю, включается возбуждение и электро­двигатель втягивается в синхронизм под влиянием появляюще­гося при этом синхронного момента.

Во время пуска синхронный электродвигатель потребляет из сети повышенный ток, который по мере уменьшения сколь­жения затухает, так же как и у асинхронного электродвигателя. Для уменьшения понижения напряжения и величины пуско­вых токов мощные синхронные электродвигатели пускаются через реактор, который затем шунтируется. Защиты синхронных электродвигателей, как и защиты асинхронных электродвига­телей, должны быть отстроены от токов, возникающих при их пуске или самозапуске, имеющих место при восстановлении напряжения в сети.

2. Момент синхронного электродвигателя зависит от напряжения сети UД, э. д. с. электродвигателя Еd и угла сдвига δ между Uди Еd. Без учета потерь в статоре и роторе

где хd и хq — продольное и поперечное реактивные сопротивле­ния двигателя.

При постоянных значениях Uди Еd каждой нагрузке электро­двигателя соответствует определенное значение угла δ.

В случае понижения напряжения в сети, как следует из выражения (18-14), момент Мд уменьшается. Если при этом он окажется меньше момента сопротивления Мс механизма, то устойчивая работа синхронного электродвигателя нарушается, возникают качания и электродвигатель выходит из синхронизма. Нарушение устойчивости возможно также при перегрузке электродвигателя или снижении возбуждения.

Эффективным средством повышения устойчивости электродви­гателя является форсировка возбуждения, увеличивающая Еd. Опыт показывает, что при глубоких понижениях напряжения (до нуля) синхронные электродвигатели, работающие с номи­нальной нагрузкой, выходят из синхронизма, если перерыв питания превосходит 0, 5 с.

При нарушении синхронизма скорость вращения электро­двигателя уменьшается и ои переходит в асинхронный режим. При этом в пусковой обмотке и цепи ротора появляются токи, создающие дополнительный асинхронный момент, под влия­нием которого синхронный электродвигатель может остаться в работе с некоторым скольжением. На асинхронный момент электродвигателя накладывается момент, обусловленный током возбуждения в роторе, имеющий переменный знак. Поэтому результирующий момент электродвигателя имеет переменную величину, что вызывает колебания скорости вращения ротора и тока статора двигателя.

Токи, появляющиеся в статоре, роторе и пусковой обмотке электродвигателя при асинхронном режиме, вызывают повы­шенный нагрев их, поэтому длительная работа синхронных электродвигателей в асинхронном режиме с нагрузкой больше 0, 4—0, 5 номинальной недопустима.

В связи с этим появляется необходимость в специальной защите от асинхронного режима. Защита от асинх­ронного режима должна или осуществить ресинхронизацию электродвигателя, или отключить его. Ресинхронизация со­стоит в том, что с электродвигателя снимается возбуждение {при этом его асинхронный момент повышается и скольжение уменьшается), через некоторое время включается возбуждение идвигатель вновь втягивается в синхронизм. Признаком нару­шения синхронизма электродвигателя является появление ко­лебаний тока в статоре и переменного тока в роторе.

3. Исследования и опыт эксплуатации показывают, что после отключения к. з. или включения резервного источника питания многие синхронные электродвигатели могут самоза­пускаться, т. е. вновь (сами) втягиваться в синхронизм.

Самозапуск синхронных электродвигателей возможен, если после восстановления напряжения под влиянием возросшего асинхронного момента (пропорционально скольжение эле-

ктродвигателя настолько уменьшится, что он сможет снова втянуться в синхронизм.

Возможность самозапуска зависит от параметров электро­двигателя, его нагрузки и уровня напряжения.

Ввиду большого значения самозапуска синхронных электро­двигателей их защиты должны надежно отстраиваться от токов, возникающих в режиме самозапуска.

б) Защиты, применяемые на синхронных электродвигателях

На синхронных электродвигателях устанавливаются следую­щие защиты:

а) от междуфазных повреждений в статоре;

б) от замыканий обмотки статора на землю;

в) от перегрузки;

г) от асинхронного режима;

д) от понижения напряжения.

Защита от междуфазных повреждений является основной и обязательной защитой любого синхронного двигателя. Она выполняется мгновенной в виде токовой отсечки или продольной дифференциальной защиты по такой же схеме, как и у асинхронных электродвигателей. Отличие заключается только в том, что защита синхронного электродвигателя одно­временно с выключателем отключает АГП. Ток срабатывания отсечки отстраивается от пусковых токов и токов самозапуска электродвигателя. При этом в случае прямого пуска синхрон­ного электродвигателя от сети пусковые токи его за счет меньшего реактивного сопротивления часто получаются большими, чем у равновеликих по мощности асинхронных двигателей.

Крупные синхронные электродвигатели оборудуются обычно продольной дифференциальной защитой. В целях упрощения на электродвигателях до 5 000 кВ • А дифференциальную защиту выполняют двухфазной. На более мощных электродвигателях защиту устанавливают на трех фазах, что позволяет обеспечить быстрое отключение электродвигателя при двойном замыкании на землю (одно в электродвигателе и второе в сети.)

Защита от замыканий обмотки статора электродвигателя на землю применяется при токах замыкания на землю больше 10 А. Защита выполняется с действием на отключение таким же образом, как у асинхронных электродвигателей, и поэтому в данном разделе подробнее не рассматривается.

Защита электродвигателя от перегру­зки осуществляется при помощи токового реле, включенного в одну фазу. При наличии постоянного дежурного персонала защита может выполняться с действием на сигнал с Iс.з = 1, 25 Iном и выдержкой времени, превышающей по возможности время затухания пусковых токов. При отсутствии дежур­ного персонала защиту от перегрузки рекомендуется выполнять двумя комплектами, один из которых действует на сигнал, а второй, более грубый — на отключение. Сигнал о перегрузке подается для вызова персонала, который должен прийти в поме­щение, где находится электродвигатель, и принять меры по его разгрузке. Отключающий комплект выполняется с Iс.з = (1, 5 ÷ 1, 75) Iном и выдержкой времени, отстроенной от пусковых токов. На электродвигателях с частыми перегрузками может применяться защита с с тепловыми реле, действующими на отключение. Однако тепловые реле следует использовать только в крайних случаях ввиду их относительной сложности и только при условии на­дежности конструкции и до­статочной стабильности ха­рактеристики.

 

Защита от асинхронного режима выпол­няется реагирующей на колебания тока в статоре или роторе двигателя, возникающие в этом режиме (рис. 18-20).

Самой простой защитой является токовая (рис. 18-21). Она выполняется при помощи зависимого токового реле (рис. 18-21, а) или посредством мгновенного токового реле, действующего на вспомогательное промежуточное реле с замедленным размыка­нием контактов (рис. 18-21, б). Действие этой защиты основано на том, что она не успевает возвратиться за время А{ спада тока между циклами качаний (рис. 18-20) и постепенно, за несколько периодов качаний набирает время и срабатывает на отключение. Ток срабатывания такой защиты (имеется в виду наименьший ток качаний, при котором защита замыкает цепь отключения) определяется не только уставкой на реле, но и зависит от продолжительного периода качаний. Для на­дежной работы защиты время возврата tвоз (подвижной системы токового реле в схеме на рис. 18-21, а или якоря промежуточ­ного реле в схеме на рис. 18-21, 6) должно быть больше времени ∆ t (рис. 18-20), в течение которого ток качаний недостаточен для действия реле, т. е. tвоз > ∆ t. Выдержка времени защиты выбирается больше времени затухания пусковых токов двига­теля.

Для выполнения рассматриваемой защиты применяется реле РТ-80 и РТ-90.

Более совершенной по своему принципу является защита, реагирующая на появление переменного тока в цепи ротора, выполняемаяпо схеме на рис. 18-22. Нормально в цепи ротора проходит постоянный ток, и защита не действует, так как ток во вторичной обмотке трансформатора тока отсутствует. При качаниях в роторе индуктируется переменный ток, под влиянием которого защита приходит в дейст­вие. Чтобы исключить возврат реле времени В в момент спада тока при большом периоде качаний, в схеме предусмотрено промежуточное реле П с замедленным возвратом, кото­рое поддерживает ток в реле времени, если провалы тока не превышают времени отхода якоря. Выдержка времени на защите устанавливается больше продолжительности несим­метричных к. з. в сети, во время которых токи обратной последова­ тельности, возникающие в статоре, индуктируют переменный ток в роторе, могущий вызвать ложное действие защиты.

Вместо трансформатора тока в схеме на рис. 18-22 можно включить дроссель, к зажимам которого подключается токовое. реле Т. Сопротивление дросселя при постоянном токе ничтожно, и поэтому напряжение на его зажимах близко к нулюиток в реле Т отсутствует. При переменном токе на зажимах дросселя появляется напряжение, достаточное для действия реле Т.

Защита от понижения напряжения яв­ляется вспомогательной и устанавливается только в следующих случаях:

1) на электродвигателях неответственных механизмов для облегчения самозапуска ответственных электродвигателей;

2) на электродвигателях, самозапуск которых оказывается невозможным;

3) на электродвигателях ответственных механизмов, произ­вольный самозапуск которых недопустим по условиям технологии производства или техники безопасности.

Схема защиты выполняется так же, как и асинхронных эле­ктродвигателей и синхронных компенсаторов. Уставки защиты зависят от ее назначения. На защитах, установленных для обеспе­чения самоаапуска ответственных электродвигателей, напряжение срабатывания берется равным уровню напряжения, при ко­тором обеспечивается надежный самозапуск, т. е.

 

Выдержка времени в этом случае отстраивается от мгновенно действующих защит в сети и принимается равной 0, 5 с.

На электродвигателях, самозапуск которых невозможен, на­пряжение срабатывания берется равным 0, 5Uном, исходя из того, что двигатели, работающие с полной нагрузкой, могут выйти из синхронизма при понижении напряжения в сети на 50% или ниже. Выдержка времени, как и в предыдущем случае, принимается равной 0, 5 с. На защитах, отключающих электродвигатели по условиям технологии или техники безопасности, напряжение срабатывания выбирается также по уровню, опасному по условиям устойчивости, т. е. Uс.з = 0, 5Uном, а время — максимальным ко условию выбега (остановки) электродвигателя (больше времени остановки).

ГЛАВА ДЕВЯТНАДЦАТАЯ

ЗАЩИТА СБОРНЫХ ШИН

ВИДЫ ЗАЩИТ ШИН И ТРЕБОВАНИЯ К НИМ

Опыт эксплуатации показывает, что, несмотря на благоприятные условия для надзора и ухода за элементами распределительных устройств электростанций и подстанций, повреждения на их шинах все же имеют место. К числу наиболее характерных причин, вызывающих к. з. на шинах, следует отнести: перекрытие шинных изоляторов и вводов выключателей; повреждение трансформаторов напряжения и установленных между шинами и выключателями трансформаторов тока; поломка изоляторов разъединителей и воз­душных выключателей во время операций с ними; ошибка об­служивающего персонала при переключениях в распределитель­ных устройствах.

Для отключения к. з., возникающих на шинах электростанций и подстанций, на питающих шины генераторах, трансформато­рах и линиях, обычно предусматриваются соответствующие за­щиты. В качестве таких защит на генераторах и Трансформато­рах служат защиты от внешних к. з., а на линиях — максималь­ные или дистанционные защиты, однако эти защиты работают при к. з. на шинах с выдержкой времени, имеющей иногда зна­чительную величину.

В то же время по условиям устойчивости, особенно в сетях 110500 кВ, обычно требуется мгновенное отключение между­фазных к. з. на шинах. В таких случаях появляется необходимостъ в применении специальных защит шин, способных отклю­чать повреждения на них без выдержки времени.

Кроме недостаточной быстроты действия, защиты линий, трансформаторов и генераторов в некоторых случаях не могут обеспечить селективного отключения поврежденной системы шин.

Характерным примером этого может служить подстанция с двумя выключателями на каждом присоединении (рис. 19-1). При к. з., например, на первой системе шин защиты 1 и 2 отклю­чают соответственно выключатели В-1 и В-2, лишив питания обе системы шин, хотя при данной схеме соединений имеется воз­можность сохранить в работе всю подстанцию, отключив выклю­чатели В-3 и В-4. Такая ликви­дация повреждения может быть обеспечена с помощью специаль­ной защиты шин.

Таким образом, специальные защиты шин применяются в тех случаях, когда защита присоеди­нений не в состоянии обеспечить необходимого быстродействия или селект ивности.

Для прекращения к. з. на ши­нах их защита должна действовать на отключение всех присоедине­ний, питающих шины. В связи с этим специальные защиты шин приобретают особую ответствен­ность, так как их неправильное действие приводит к отключению целой электростанции или под­станции либо их секции. Поэтому принцип действия защит шин и их практическое выполнение (монтаж) должны отличаться повышенной надежностью, исклю­чающей какую-либо возможность их ложного действия.

В настоящее время в качестве быстродействующей и селек­тивной защиты шин получила повсеместное распространение защита, основанная на дифференциальном принципе. На транс­форматорах и секционных выключателях, питающих шины, у ко­торых отходящие линии имеют реакторы, в качестве специаль­ной защиты шин применяются токовые отсечки и дистанционные защиты.

В последнее время быстрое отключение к. з. на шинах соче­тается с автоматическим повторным включением шин (АПВ). Опыт эксплуатации показывает, что некоторая часть к. з. на ши­нах имеет переходящий характер и при быстром отключении не восстанавливается после повторного включения.

 

Дифференциальная защита шин

Дифференциальная защита шин (рис. 19-2) основывается на том же принципе, что и рассмотренные ранее дифференциальные защиты генераторов, трансформаторов и ли­ний, т. е. на сравнении величины и фазы токов, приходящих к защищаемому элементу и уходящих от него.

Для питания защиты на всех присоединениях устанавливаются трансформаторы тока с одинаковым коэффициентом трансформа­ции пТ (независимо от мощности при­соединения).

Дифференциальное реле 1 подклю­чается к трансформаторам тока всех присоединений, так чтобы при первич­ных токах, направленных к шинам, в нем проходил ток, равный сумме токов всех присоединений, т. е. Iр == Σ Iприс. Тогда при внешних к. з. Σ Iприс = О и реле не действует, а при к. з. в зоне (на шинах) Σ Iприс равна сумме токов к. з., притекающих к месту повреждения, и защита работает.

Обычно первичные обмотки всех трансформаторов тока подключаются к шинам одноименными зажимами (рис.19-2); при этом для выполнения ука­занного включения реле 1 все вторичные обмотки трансформаторов тока соединяются параллельно одноименной
полярностью (начало — с началом, конец — с концом) и параллельно к ним подключается обмотка реле 1.

При внешнем к. з. (точка К на рис. 19-2) ток к. з. I4, идущий от шин к месту к. з. по поврежденной линии Л4, равен сумме токов, притекающих к шинам от источников питания:

Из токораспределения, показанного на рис. 19-2, видно, что вторичные токи /, / и /зв, соответствующие первичным токам, притекающим к шинам, направлены в обмотке реле противопо- ложно току / (первичный ток которого утекает от шин). Ток в реле

Выражая вторичные токи через первичные и учитывая равенство (19-1), получаем, что ток

Следовательно, при внешних к. з. ток в реле отсутствует.


 

Выражение (19-5) показывает, что при к. з. на шинах диффе­ренциальная защита шин реагирует на полный ток Iк в месте к. з. и благодаря этому имеет наивыгоднейшие условия в отношении чувствительности. Защита будет действовать, если

В нормальном режиме по части присоединений токи направлены к шинам, а по другой части — от шин. Сумма токов, приходящих к шинам, всегда равна сумме токов, уходящих от них: Σ Iприх= Σ Iуход.

В обмотке реле приходящие и уходящие токи направлены встречно, поэтому ток в реле

Но из-за погрешности трансформаторов тока в реле появляется ток небаланса. Поскольку токи нагрузки меньше токов к. з, величина тока небаланса в нормальном режиме значительно меньше, чем при внешнем к. з.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-29; Просмотров: 890; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.028 с.)
Главная | Случайная страница | Обратная связь