Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Опишите свойства минералов класса самородные элементы-золото и алмаз.



Контрольная работа

 

 

по учебной дисциплине Минералогия и Петрография

 

Студент Собянин Максим Сергеевич

(Ф.И.О. полностью)

 

Группа Г-01-11

Специальности 130103 Геофизические методы поисков и разведки месторождений полезных ископаемых (базовая подготовка)

Вариант № __17_ Дата проверки _______________
Дата регистрации _____________ Оценка _____________________
  ______________ (подпись преподавателя)

 

 

20­­­­11_/2012 учебный год

 

 

Введение

1. Опишите свойства минералов класса самородные элементы-золото и алмаз

2. Опишите свойства минералов, составляющих лимонит- гетита и лепидокрокита

3. Дайте определение понятию «горная порода». Приведите классификацию горных пород по условиям образования

4. Что такое «метаморфизм»? напишите факторы и виды метаморфизма.

5. Опишите кристаллические сланцы и кварциты.

 

Опишите свойства минералов класса самородные элементы-золото и алмаз.

Золото — элемент побочной подгруппы первой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 79. Обозначается символом Au (лат. Aurum[2]). Простое вещество, благородный металл жёлтого цвета. Регистрационный номер CAS: 7440-57-5.

 

Физические свойства

Чистое золото — мягкий металл жёлтого цвета. Красноватый оттенок некоторым изделиям из золота, например, монетам, придают примеси других металлов, в частности, меди. В тонких плёнках золото просвечивает зелёным. Золото обладает исключительно высокой теплопроводностью и низким электрическим сопротивлением.

 

Золото — очень тяжёлый металл: плотность чистого золота равна 19 621 кг/м³ (шар из чистого золота диаметром 46 мм имеет массу 1 кг). Среди металлов по плотности занимает шестое место: после осмия, иридия, рения, платины и плутония. Высокая плотность золота облегчает его добычу. Самые простые технологические процессы, такие, как, например, промывка на шлюзах, могут обеспечить весьма высокую степень извлечения золота из промываемой породы.

 

Золото — очень мягкий металл: твёрдость по шкале Мооса ~2.5 (сравнима с твёрдостью ногтя), по Бринеллю 220—250 МПа.

 

Золото также высокопластично: оно может быть проковано в листки толщиной до ~0, 1 мкм (сусальное золото); при такой толщине золото полупрозрачно и в отражённом свете имеет жёлтый цвет, в проходящем — окрашено в дополнительный к жёлтому синевато-зеленоватый. Золото может быть вытянуто в проволоку с линейной плотностью до 500 м/г.

 

Химические свойства

 

Золото — самый инертный металл, стоящий в ряду напряжений правее всех других металлов. При нормальных условиях оно не взаимодействует с большинством кислот и не образует оксидов, благодаря чему было отнесено к благородным металлам, в отличие от обычных металлов, разрушающихся под действием окружающей среды. Затем была открыта способность царской водки растворять золото, что опровергло мнение об его химической инертности.

 

Наиболее устойчивая степень окисления золота в соединениях +3, в этой степени окисления оно легко образует с однозарядными анионами (F−, Cl−. CN− ) устойчивые плоские квадратные комплексы [AuX4]−. Относительно устойчивы также соединения со степенью окисления +1, дающие линейные комплексы [AuX2]−. Долгое время считалось, что +3 — высшая из возможных степеней окисления золота, однако, используя дифторид криптона, удалось получить соединения Au+5 (фторид AuF5, соли комплекса [AuF6]− ). Соединения золота(V) стабильны лишь со фтором и являются сильнейшими окислителями.

 

При взаимодействии атомарного фтора с пентафторидом золота были получены летучие фториды золота (VI) и (VII): AuF6 и AuF7. Они крайне неустойчивы, особенно AuF6, который дисмутирует с образованием AuF5 и AuF7.[3]

 

Степень окисления +2 для золота нехарактерна, в веществах, в которых она формально равна 2, половина золота, как правило, окислена до +1, а половина — до +3, например, правильной ионной формулой сульфата золота(II) AuSO4 будет не Au2+(SO4)2−, а Au1+Au3+(SO4)2− 2, однако обнаружены комплексы, в которых золото всё-таки имеет степень окисления +2.

 

Есть соединения золота, называемые ауридами, со степенью окисления − 1. Например, CsAu (аурид цезия), Na3Au (аурид натрия)[4].

 

Из чистых кислот золото растворяется только в горячей концентрированной селеновой кислоте:

2Au + 6H2SeO4 = Au2(SeO4)3 + 3H2SeO3 + 3H2O

 

Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:

4Au + 8CN− + 2H2O + O2 → 4[Au(CN)2]− + 4 OH−

 

Цианоаураты легко восстанавливаются до чистого золота:

2Na[Au(CN)2] + Zn = Na2[Zn(CN)4] + 2Au

 

В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °C с образованием хлорида золота(III), то в концентрированном водном растворе соляной и азотной кислот (царская водка) золото растворяется с образованием хлораурат-иона уже при комнатной температуре:

2Au + 3Cl2 + 2Cl− → 2[AuCl4]−

 

Золото легко реагирует с жидким бромом и его растворами в воде и органических растворителях, давая трибромид AuBr3[5].

 

Со фтором золото реагирует в интервале температур 300− 400 °C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются.

 

Золото также растворяется во ртути, фактически образуя легкоплавкий сплав (амальгаму), содержащий интерметаллиды.

 

Существуют золотоорганические соединения (например, бромид диэтилзолота).

 

Физиологическое воздействие

 

Некоторые соединения золота токсичны, накапливаются в почках, печени, селезёнке и гипоталамусе, что может привести к органическим заболеваниям и дерматитам, стоматитам, тромбоцитопении. Органические соединения золота (препараты кризанол и ауранофин) применяются в медицине при лечении аутоиммунных заболеваний, в частности ревматоидного артрита.

 

Геохимия золота

 

Содержание золота в земной коре очень низкое — 0, 5÷ 5 мкг/кг[6][7], но месторождения и участки, резко обогащённые металлом, весьма многочисленны. Золото содержится и в воде. 1 л и морской, и речной воды несёт примерно 4·10− 9 г золота, что соответствует 4 килограммам золота в 1 кубическом километре воды.

 

Золоторудные месторождения возникают преимущественно в районах развития гранитоидов, небольшое их количество ассоциирует с основными и ультраосновными породами. Золото образует промышленные концентрации в постмагматических, главным образом гидротермальных, месторождениях. В экзогенных условиях видимое золото является очень устойчивым элементом и легко накапливается в россыпях. Однако субмикроскопическое золото, входящее в состав сульфидов, при окислении последних приобретает способность мигрировать в зоне окисления. В результате золото иногда накапливается в зоне вторичного сульфидного обогащения, но максимальные его концентрации связаны с накоплением в зоне окисления, где оно ассоциирует с гидроокислами железа, марганца. Миграция золота в зоне окисления сульфидных месторождений, происходит в виде бромистого и йодистого соединений в ионной форме. Некоторыми учёными допускается растворение и перенос золота сульфатом окиси железа или в виде суспензионной взвеси.

 

В природе известны 15 золотосодержащих минералов: самородное золото с примесями серебра, меди и др., электрум Au и 25 — 45 % Ag; порпесит AuPd; медистое золото, бисмутоаурит (Au, Bi); родистое золото, иридистое золото, платинистое золото. Остальные минералы представлены теллуридами золота: калаверит AuTe2, креннерит AuTe2, сильванит AuAgTe4, петцит Ag3AuTe2, мутманит (Ag, Au)Te, монтбрейит Au2Te3, нагиагит Pb5AuSbTe3S6.

 

Для золота характерна самородная форма. Среди других его форм стоит отметить электрум, сплав золота с серебром, который обладает зеленоватым оттенком и относительно легко разрушается при переносе водой. В горных породах золото обычно рассеяно на атомарном уровне. В месторождениях оно зачастую заключено в сульфиды и арсениды.

 

Различаются первичные месторождения золота, россыпи, в которые оно попадает в результате разрушения рудных месторождений и месторождения с комплексными рудами, в которых золото извлекается в качестве попутного компонента.

 

Алмаз — минерал, кубическая аллотропная форма углерода. При нормальных условиях метастабилен т.е. может существовать неограниченно долго. В вакууме или в инертном газе при повышенных температурах постепенно переходит в графит.

 

Структура

 

Сингония кубическая, кристаллическая решётка — кубическая гранецентрированная, а = 0, 357 нм = 3, 57 Å , z = 4, пространственная группа Fd3m (по Герману — Могену). Атомы углерода в алмазе находятся в состоянии sp³ -гибридизации. Каждый атом углерода в структуре алмаза расположен в центре тетраэдра, вершинами которого служат четыре ближайших атома. Именно прочная связь атомов углерода объясняет высокую твёрдость алмаза.

 

Схематическое изображение кристаллической решетки алмаза

 

Окраска

 

Подавляющее большинство ювелирных алмазов — алмазы жёлтого и коричневого цвета. Для алмазов жёлтых оттенков характерен дефект структуры Н − 3. В зависимости от концентрации этих дефектов возможны оттенки жёлтого цвета от едва уловимых до ясно видимых. В бесцветных алмазах, в которых даже спектрофотометром не удается зафиксировать наличие Н − 3 дефектов, они также могут присутствовать, если присутствует голубая люминесценция. Только 10—12 % всех исследованных алмазов с ясно видимым жёлтым оттенком, указывающим на присутствие Н − 3 центров, не имели голубой люминесценции или она была ослаблена. Это вызвано наличием примесей в структуре алмаза, вызывающих тушение люминесценции. Важным оптическим свойством Н − 3 центра является то, что голубой цвет люминесценции является дополнительным к жёлтому оттенку окраски. Это означает, что при равенстве зрительных реакций от интенсивностей излучений этих оттенков их суммарная реакция на глаз оценщика будет такой же, как от бесцветного (белого) излучения; то есть при определенных условиях жёлтый оттенок окраски компенсируется голубым оттенком люминесценции. В общем случае имеется неравенство интенсивностей окраски по зонам и неравенство визуальных реакций от жёлтого цвета окраски и голубого цвета люминесценции. Можно рассматривать люминесценцию как фактор «компенсации» жёлтой окраски, действующий со знаком «плюс» или «минус». Из этого следует ряд практических выводов, важных для некоторых аспектов оценки алмазов и их разметки перед распиливанием.

 

Необходимо учитывать совместное воздействие на глаз сортировщика жёлтого оттенка окраски и голубого оттенка люминесценции кристалла. Поэтому следует алмазы первого цвета разделять на те, из которых могут получиться бриллианты высших цветов, и на те, из которых они не могут быть получены. При входном контроле кристаллов из общего числа следует извлечь все нелюминесцирующие алмазы без малейшего присутствия жёлтого оттенка (допускается слабый коричневый нацвет) и с пропусканием более 70 %. Эти алмазы могут рассматриваться как исходные кристаллы для получения бриллиантов 1, 2 цвета. Количество их достигает не более 1—3 % от общего числа.

 

Каждый цветной бриллиант — совершенно уникальное произведение природы. Существуют редкие цвета алмазов: розовый, синий, зеленый и даже красный.

 

Примеры некоторых цветных бриллиантов:

Дрезденский зелёный бриллиант,

Жёлтый алмаз Тиффани,

Портер Родс (голубой).

 

ЛИМОНИТ

 

ЛИМОНИТ (бурый железняк), агрегат или смесь нескольких минералов, гидроксидов железа с преобладанием гетита. Название происходит от греч. «лимон» – луг или болото. Встречается в виде мелко- или скрытокристаллических плотных сталактитоподобных выделений или землистых масс. Цвет обычно темный – красновато-бурый или ржаво-коричневатый, черта желтовато-коричневая. Твердость в пределах 5, 0–5, 5, плотность 3, 8–4, 2. Образуется как вторичный продукт в результате окисления и гидратации первичных минералов, содержащих железо. Весьма широко распространен. Главный компонент железных шляп в верхней части зон окисления сульфидных рудных тел; образует рассеянную вкрапленность в зоне окисления пород, содержащих сульфиды, силикаты и карбонаты железа. Встречается также в качестве природного железистого цемента, связующего зерна минералов в осадочных породах, особенно в песчаниках. Железо, растворенное в морской воде при ее испарении или при участии железобактерий, отлагается в виде пластов осадочных лимонитов – оолитовых бурых железняков. Железобактерии распространены также в торфяных болотах. Если водотоки, дренирующие территории, где в изобилии присутствуют окисленные минералы железа, впадают в болото, происходит накопление лимонитовой болотной руды. Болотные железные руды добывают в некоторых странах Европы. Лимонит как продукт гидратации гематита часто встречается в гематитовых рудных телах в районе оз. Верхнего в США. В России лимонит распространен в зонах окисления рудных месторождений (Бакал на Урале и др.) и в корах выветривания (Урал). Развитие черной металлургии в России началось с разработки месторождений болотных железных руд Карелии. Лимонит используется также для изготовления пигмента – желтой охры.

 

ЛЕПИДОКРОКИТ рубиновая слюдка, — минерал класса гидроксидов, FeO(OH). Содержит Fe2О3 89, 86% и Н2О 10, 14%, примеси MnO, Al2О3, SiO2, CaO, MgO, иногда избыток Н2О. Сингония ромбическая, кристаллическая структура слоистая. Характерны чешуйчатые, пластинчатые, волокнистые, пучковидные и радиально-волокнистые агрегаты, часто образует зональные агрегаты, в которых чередуется с гётитом или гидрогётитом. Цвет рубиново-красный до коричневого. Блеск алмазный. Спайность совершенная в одном направлении. Твердость 4-5. Плотность 3840- 4100 кг/м3. Хрупок. Встречается в составе бурых железняков, бокситов, почв. Известен в составе железных руд гидротермально-осадочных месторождений (Бакальское на Урале). Обогащается аналогично лимониту. Искусственно получается из закисных соединений железа.

Гетит — минерал, назван в честь великого немецкого поэта, философа, естествоиспытателя и коллекционера минералов И. В. Гёте. Синоним — железная руда игольчатая. a-FeOOH. Сингония ромбическая, ромбо-дипирамидальный вид симметрии.

 

Свойства

 

Кристаллы гётита, образец 8 см. Из пегматитов Володарск-Волынска, Украина. Фото/колл.: В. Слётов, с сайта http: //mindraw.web.ru

 

Цвет: жёлтый, охряно-жёлтый, жёлто-бурый, бурый. Блеск: от алмазного до тусклого, в волокнистых разностях — атласный, шелковистый. Полупрозрачен. Цвет черты (цвет в порошке) — от охряно-жёлтого до буро-жёлтого. Твёрдость: 5 — 5, 5. Хрупкий. Плотность 4, 3. Спайность совершенная по (010), ясная по (100).

 

Формы нахождения

 

Кристаллы игольчатые, пластинчатые, столбчатые; землистые, порошкообразные массы; почковидные радиально-лучистые тонковолокнистые агрегаты( «бурая стеклянная голова»); ноздреватые конкреции, сферолитовые[1] почковидные корки и псевдосталактиты[2]. Под паяльной трубкой плавится с трудом, чернеет и намагничивается (т.к. теряет воду и превращается в магнитный оксид). Растворим в соляной кислоте.

 

Сопутствующие минералы

 

Гематит, пирит, сидерит, лепидокрокит, ярозит, псиломелан, магнетит, кварц, халцедон, кальцит.

 

Происхождение и месторождения

 

Встречается в виде продукта выветривания; образуется при нормальных температуре и давлении из других железосодержащих минералов: сидерита, магнетита, пирита и др., либо как продукт осаждения в болотах и природных источниках. Основной компонент лимонита, входит в состав бурых железняков. Изредка встречается как гидротермальный минерал в виде игольчатых и столбчатых кристаллов. Часто находится в виде включений в кристаллах кварца, в халцедонах и в агатах.

 

 

Дайте определение понятию «горная порода». Приведите классификацию горных пород по условиям образования.

Горные породы — природная совокупность минералов более или менее постоянного минералогического состава, образующая самостоятельное тело в земной коре. Планеты и другие твёрдые космические объекты состоят из горных пород.

 

Магматические горные породы

 

По глубине формирования породы делятся на три группы: породы кристаллизующиеся на глубине — интрузивные горные породы, например, гранит. Они образуются при медленном остывании магмы и обычно хорошо раскристаллизованны; гипабисальные горные породы образуются при застывании магмы на небольших глубинах, и часто имеют неравномернозернистые структуры (долерит). Эффузивные горные породы формируются на земной поверхности или на дне океана (базальт, риолит, андезит).

 

Подавляющее большинство природных магм содержат в качестве основного компонента кремний и представляют собой силикатные расплавы. Много реже встречаются карбонатные и сульфидные и металлические расплавы. Из карбонатных раплавов образуются карбонатные магматические горные породы — карбонатиты. В XX-том веке зафиксированно несколько извержений вулканов с карбонатитовыми магмами. Сульфидные и металлические расплавы образуются в следстивие несмесимости и ликвации с силикатными жидкостями.

 

Важнейшей характеристикой магматической породы является состав. Существует несколько классификаций магматических горных пород по составу (номенклатура горных пород). Наибольшее значение имеет классификация по содержанию в породах кремнезёма SiO2, и щелочей(Na2O + K2O). По содержанию щелочей породы делятся на серии. Выделяются породы нормальной, субщелочной и щелочной серий. Формальным признаком такого деления служит появление в породе специфических щелочных минералов. По содержанию SiO2 породы разделены на ультраосно́ вные — SiO2 в породе меньше 45 %, осно́ вные — если содержание SiO2 находится в диапазоне от 45 % до 54 %, средние — если от 54 до 65 % и кислые — содержание SiO2 больше 65 %.

 

Образование магматических пород непрерывно происходит и сейчас, в зонах активного вулканизма и горообразования.

 

Осадочные горные породы

 

Осадочные горные породы образуются на земной поверхности и вблизи неё в условиях относительно низких температур и давлений в результате преобразования морских и континентальных осадков. По способу своего образования осадочные породы подразделяются на три основные генетические группы: обломочные породы (брекчии, конгломераты, пески, алевриты) — грубые продукты преимущественно механического разрушения материнских пород, обычно наследующие наиболее устойчивые минеральные ассоциации последних; глинистые породы —дисперсные продукты глубокого химического преобразования силикатных и алюмосиликатных минералов материнских пород, перешедшие в новые минеральные виды; хемогенные, биохемогенные и органогенные породы — продукты непосредственного осаждения из растворов (например, соли), при участии организмов (например, кремнистые породы), накопления органических вещества (например, угли) или продукты жизнедеятельности организмов (например, органогенные известняки). Промежуточное положение между осадочными и вулканическими породами занимает группа эффузивно-осадочных пород. Между основными группами осадочных пород наблюдаются взаимные переходы, возникающие в результате смешения материала разного генезиса. Характерной особенностью осадочных Г. п., связанной с условиями образования, является их слоистость и залегание в виде более или менее правильных геологических тел (пластов).

 

Кварцит

регионально-метаморфизованная горная порода, сложенная в основном зернами кварца, макроскопически неразличимыми между собой и сливающимися в сплошную плотную массу с занозистым или раковинным изломом. Кроме кварца в К. часто встречаются и другие минералы, по которым выделяются специальные разновидности К.: слюдистые, гранатовые, роговообманковые и др. Образование К. связано с перекристаллизацией песчаников в процессе регионального метаморфизма. К К. относят также некоторые кремнистые породы, являющиеся продуктами цементации кварцевых зёрен опалом или метасоматические замещения известняков и др. карбонатных пород кремнезёмом. Железистые К., в которых, кроме кварца, присутствуют гематит или магнетит, образуются в результате перекристаллизации железистых песчаников или кремнистых сланцев. К. характеризуются большим содержанием SiO2 (95—99%), высокой огнеупорностью до 1710—1770 °С и механической прочностью; временное сопротивление сжатию — 100—455 МН/м2 (1000— 4550 кгс/см2).

К. залегают среди разнообразных метаморфических пород в виде сплошных пластовых тел большой протяжённости. Особенно широко распространены К. в отложениях протерозоя. Многие разновидности К. — ценные полезные ископаемые. Железистые (магнетитовые) К. — важнейшая железная руда (например, месторождения Кривого Рога и Курской магнитной аномалии в СССР, оз. Верхнего в США, Лабрадора в Канаде). К., в которых содержание SiO2 достигает 98—99%, используются для изготовления динасовых огнеупорных изделий

 

Контрольная работа

 

 

по учебной дисциплине Минералогия и Петрография

 

Студент Собянин Максим Сергеевич

(Ф.И.О. полностью)

 

Группа Г-01-11

Специальности 130103 Геофизические методы поисков и разведки месторождений полезных ископаемых (базовая подготовка)

Вариант № __17_ Дата проверки _______________
Дата регистрации _____________ Оценка _____________________
  ______________ (подпись преподавателя)

 

 

20­­­­11_/2012 учебный год

 

 

Введение

1. Опишите свойства минералов класса самородные элементы-золото и алмаз

2. Опишите свойства минералов, составляющих лимонит- гетита и лепидокрокита

3. Дайте определение понятию «горная порода». Приведите классификацию горных пород по условиям образования

4. Что такое «метаморфизм»? напишите факторы и виды метаморфизма.

5. Опишите кристаллические сланцы и кварциты.

 

Опишите свойства минералов класса самородные элементы-золото и алмаз.

Золото — элемент побочной подгруппы первой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 79. Обозначается символом Au (лат. Aurum[2]). Простое вещество, благородный металл жёлтого цвета. Регистрационный номер CAS: 7440-57-5.

 

Физические свойства

Чистое золото — мягкий металл жёлтого цвета. Красноватый оттенок некоторым изделиям из золота, например, монетам, придают примеси других металлов, в частности, меди. В тонких плёнках золото просвечивает зелёным. Золото обладает исключительно высокой теплопроводностью и низким электрическим сопротивлением.

 

Золото — очень тяжёлый металл: плотность чистого золота равна 19 621 кг/м³ (шар из чистого золота диаметром 46 мм имеет массу 1 кг). Среди металлов по плотности занимает шестое место: после осмия, иридия, рения, платины и плутония. Высокая плотность золота облегчает его добычу. Самые простые технологические процессы, такие, как, например, промывка на шлюзах, могут обеспечить весьма высокую степень извлечения золота из промываемой породы.

 

Золото — очень мягкий металл: твёрдость по шкале Мооса ~2.5 (сравнима с твёрдостью ногтя), по Бринеллю 220—250 МПа.

 

Золото также высокопластично: оно может быть проковано в листки толщиной до ~0, 1 мкм (сусальное золото); при такой толщине золото полупрозрачно и в отражённом свете имеет жёлтый цвет, в проходящем — окрашено в дополнительный к жёлтому синевато-зеленоватый. Золото может быть вытянуто в проволоку с линейной плотностью до 500 м/г.

 

Химические свойства

 

Золото — самый инертный металл, стоящий в ряду напряжений правее всех других металлов. При нормальных условиях оно не взаимодействует с большинством кислот и не образует оксидов, благодаря чему было отнесено к благородным металлам, в отличие от обычных металлов, разрушающихся под действием окружающей среды. Затем была открыта способность царской водки растворять золото, что опровергло мнение об его химической инертности.

 

Наиболее устойчивая степень окисления золота в соединениях +3, в этой степени окисления оно легко образует с однозарядными анионами (F−, Cl−. CN− ) устойчивые плоские квадратные комплексы [AuX4]−. Относительно устойчивы также соединения со степенью окисления +1, дающие линейные комплексы [AuX2]−. Долгое время считалось, что +3 — высшая из возможных степеней окисления золота, однако, используя дифторид криптона, удалось получить соединения Au+5 (фторид AuF5, соли комплекса [AuF6]− ). Соединения золота(V) стабильны лишь со фтором и являются сильнейшими окислителями.

 

При взаимодействии атомарного фтора с пентафторидом золота были получены летучие фториды золота (VI) и (VII): AuF6 и AuF7. Они крайне неустойчивы, особенно AuF6, который дисмутирует с образованием AuF5 и AuF7.[3]

 

Степень окисления +2 для золота нехарактерна, в веществах, в которых она формально равна 2, половина золота, как правило, окислена до +1, а половина — до +3, например, правильной ионной формулой сульфата золота(II) AuSO4 будет не Au2+(SO4)2−, а Au1+Au3+(SO4)2− 2, однако обнаружены комплексы, в которых золото всё-таки имеет степень окисления +2.

 

Есть соединения золота, называемые ауридами, со степенью окисления − 1. Например, CsAu (аурид цезия), Na3Au (аурид натрия)[4].

 

Из чистых кислот золото растворяется только в горячей концентрированной селеновой кислоте:

2Au + 6H2SeO4 = Au2(SeO4)3 + 3H2SeO3 + 3H2O

 

Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:

4Au + 8CN− + 2H2O + O2 → 4[Au(CN)2]− + 4 OH−

 

Цианоаураты легко восстанавливаются до чистого золота:

2Na[Au(CN)2] + Zn = Na2[Zn(CN)4] + 2Au

 

В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °C с образованием хлорида золота(III), то в концентрированном водном растворе соляной и азотной кислот (царская водка) золото растворяется с образованием хлораурат-иона уже при комнатной температуре:

2Au + 3Cl2 + 2Cl− → 2[AuCl4]−

 

Золото легко реагирует с жидким бромом и его растворами в воде и органических растворителях, давая трибромид AuBr3[5].

 

Со фтором золото реагирует в интервале температур 300− 400 °C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются.

 

Золото также растворяется во ртути, фактически образуя легкоплавкий сплав (амальгаму), содержащий интерметаллиды.

 

Существуют золотоорганические соединения (например, бромид диэтилзолота).

 

Физиологическое воздействие

 

Некоторые соединения золота токсичны, накапливаются в почках, печени, селезёнке и гипоталамусе, что может привести к органическим заболеваниям и дерматитам, стоматитам, тромбоцитопении. Органические соединения золота (препараты кризанол и ауранофин) применяются в медицине при лечении аутоиммунных заболеваний, в частности ревматоидного артрита.

 

Геохимия золота

 

Содержание золота в земной коре очень низкое — 0, 5÷ 5 мкг/кг[6][7], но месторождения и участки, резко обогащённые металлом, весьма многочисленны. Золото содержится и в воде. 1 л и морской, и речной воды несёт примерно 4·10− 9 г золота, что соответствует 4 килограммам золота в 1 кубическом километре воды.

 

Золоторудные месторождения возникают преимущественно в районах развития гранитоидов, небольшое их количество ассоциирует с основными и ультраосновными породами. Золото образует промышленные концентрации в постмагматических, главным образом гидротермальных, месторождениях. В экзогенных условиях видимое золото является очень устойчивым элементом и легко накапливается в россыпях. Однако субмикроскопическое золото, входящее в состав сульфидов, при окислении последних приобретает способность мигрировать в зоне окисления. В результате золото иногда накапливается в зоне вторичного сульфидного обогащения, но максимальные его концентрации связаны с накоплением в зоне окисления, где оно ассоциирует с гидроокислами железа, марганца. Миграция золота в зоне окисления сульфидных месторождений, происходит в виде бромистого и йодистого соединений в ионной форме. Некоторыми учёными допускается растворение и перенос золота сульфатом окиси железа или в виде суспензионной взвеси.

 

В природе известны 15 золотосодержащих минералов: самородное золото с примесями серебра, меди и др., электрум Au и 25 — 45 % Ag; порпесит AuPd; медистое золото, бисмутоаурит (Au, Bi); родистое золото, иридистое золото, платинистое золото. Остальные минералы представлены теллуридами золота: калаверит AuTe2, креннерит AuTe2, сильванит AuAgTe4, петцит Ag3AuTe2, мутманит (Ag, Au)Te, монтбрейит Au2Te3, нагиагит Pb5AuSbTe3S6.

 

Для золота характерна самородная форма. Среди других его форм стоит отметить электрум, сплав золота с серебром, который обладает зеленоватым оттенком и относительно легко разрушается при переносе водой. В горных породах золото обычно рассеяно на атомарном уровне. В месторождениях оно зачастую заключено в сульфиды и арсениды.

 

Различаются первичные месторождения золота, россыпи, в которые оно попадает в результате разрушения рудных месторождений и месторождения с комплексными рудами, в которых золото извлекается в качестве попутного компонента.

 

Алмаз — минерал, кубическая аллотропная форма углерода. При нормальных условиях метастабилен т.е. может существовать неограниченно долго. В вакууме или в инертном газе при повышенных температурах постепенно переходит в графит.

 


Поделиться:



Популярное:

  1. Билеты по русскому языку для 7 класса
  2. Блок этапов № 1 для класса С
  3. ДЕ – 7. Методика работы над элементами алгебры и геометрии в начальных классах
  4. Добывание из недр земли минералов
  5. Допустимый уровень взрывозащиты или степень защиты электрических светильников в зависимости от класса взрывоопасной зоны
  6. Из истории методики изучения грамматики в начальных классах
  7. Изучение социометрической структуры класса и определение социометрического статуса учащихся в классном коллективе
  8. Инкапсуляция на основе свойств класса
  9. Как использовать объекты класса?
  10. КИМ итоговой работы для промежуточной аттестации по окружающему миру для 4 класса.
  11. марта 2016. Выступление девочек из нашего класса в составе хора первоклассников на школьном концерте, посвященном празднику 8 Марта.
  12. МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ


Последнее изменение этой страницы: 2016-05-29; Просмотров: 1104; Нарушение авторского права страницы


lektsia.com 2007 - 2025 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.104 с.)
Главная | Случайная страница | Обратная связь