![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Фрезерование древесины и древесных материалов.
Фрезерование – процесс резания вращающимися резцами, при котором абсолютной траекторией резания является циклоида. Различают пять видов фрезерования: · Цилиндрическое · Коническое · Торцовое · Торцово-коническое · Профильное
Толщина стружки h измеряется по нормали к последующей траектории в данной точке. В точке входа а h»0. h»Uz*sinj, где j - текущий угол поворота резца, считая от вертикали. Максимальная толщина стружки – по радиусу через точку b при j=jвых: hmax=Uzsinjвых. В расчетах используют среднюю толщину стружки hср. Площадь боковой поверхности реальной стружки UzH, фиктивной L*hср, откуда hср=Uz*H/L. Средняя толщина стружки (в середине дуги резания) hсеред= Uz*sin(jвых/2)»hср. Отсюда hmax»2hср.
Глубину неровностей разрушения определяет величина подачи на зуб Uz и углы встречи jв, скоса jс, наклона jн.
В соответствии с формулой И.А.Тимс Р=КВh, где К- удельная сила резания при фрезеровании (Н/ммª ), В- ширина фрезерования (мм), h- толщина стружки (мм). Т.к. h=Uz sinφ, то Р=КВUz sinφ, где φ - угол, определяющий положение резца на окружности резания. Приближенно считают, что при 0≤ φ ≤ φ вых (на длине стружки) К не зависит от φ, а sinφ пропорционален φ, тогда Р≈ А0φ, где А0- коэффициент пропорциональности. Сила Р растёт от Рmax. Работа срезания одной стружки определяется как площадь F1 соответствующего треугольника: А1=0, 5Р maxℓ. Такую же работу за время срезания одной стружки совершает средняя сила резания Рср (площадь прямоугольника F2): Аср=А1ℓ. Отсюда Рср=0, 5Р max. Окружная сила Рокр непрерывно действует во время полного оборота фрезы и совершает работу, равную работе фактической силы резания за это же время. работа Рокр (площадь прямоугольника F3): Аокр= Рокр∙ 2π R. Работа срезания одной стружки Аср=Рср∙ ℓ, поэтому работа срезания всеми z ножами по одной стружке, т.е. суммарная работа фактической силы резания за один полный оборот фрезы Аz= Рсрℓ z. Поскольку Аокр=Аz, Рокр=Рср∙ ℓ z/2π R. Силу Рокр определяют как Рокр=Nрез/υ. Nрез=КV1=Кт∙ апопр[ВН(U/60)] (Вт), где К- удельная работа фрезерования для заданных условий резания (Дж/см£ ); V1- номинальный объём стружки, удаляемый с заготовки за 1с (см£ /см); Кт- табличная удельная работа фрезерования (Дж/см£ ); апопр- общий поправочный множитель; В- ширина фрезерования (мм); Н- глубина фрезерования (мм); U/60- путь заготовки за 1с (м). Цилиндрическое фрезерование вдоль, поперёк волокон и в торец имеет одну и ту же кинематику, но силовые характеристики процессов, стружкообразование и качество обработки поверхности будут разными. Криволинейное и профильное фрезерование сводят к цилиндрическому (усложнённому).
Ножи для фрезерования (ГОСТ 6564-73) изготавливаются двух типов: 1 и 2- без прорезей и с прорезями. Тип 1 (без прорезями): L=30…1610, В=25…45. Тип 2 (с прорезями): L=40…310, В=100, 110, 125. Ножи – сменный режущий инструмент ножевых головок и валов.
Фрезы применяются для плоского и профильного фрезерования, шипорезных операций, выробатки гнёзд и д.р. По способу крепления на станке фрезы делят на насадные и концевые. Насадные центральным отверстием насаживаютяс на рабочий шпиндель станка, а концевые имеют хвостовик для крепления в шпинделе.
Сборные фрезы имеют корпус из конструкционной стали и вставные сменные ножи из ценной легированной стали, которые могут быть оснащены пластинками из твёрдого сплава (см.выше). Преимущество сборных фрез заключается в сравнительной простоте изготовления сменных профилей, что важно для обработки малых партий деталей различного профиля. Если у зуба фрезы плоская задняя грань и заточка производится по ней параллельными слоями, то по мере переточек α уменьшается. Заточка по задней грани с сохранением α приводит к уменьшению β и прочности зуба. Поэтому заднюю грань оформляют для постоянства α по архимедовой или логарифмической спирали или по дуге окружности, проведённой из смещённого центра. Для обеспечения нормальной работы участков контура лезвия зуба, лежат в плоскости вращения фрезы или близко к ней, создают угол бокового зазора косой боковой заточкой затылка зуба тангенциальным поднутрением на 2…3°) или радиальным поднутрением на 30′ …1° (как у зубьев строгальной пилы). Это можно показать на примере составной фрезы (вид сзади на предыдущей схеме). Материал Х6ВС и твёрдые сплавы ВК15 или быстрорежущая сталь Р6Н5. Точение древесины.
Технологическая цель процесса точения – получение деталей с поверхностями тел вращения – цилиндрической, конической или более сложной формы. По направлению подачи относительно оси вращения различают продольное (осевое) и поперечное точение. Поперечное точение классифицируют на радиальное и тангенциальное. Радиальное точение имеет место при подаче резца перпендикулярно оси вращения, по радиусу. Абсолютная траектория точки лезвия резца – архимедова спираль. Толщина стружки h=1000∙ U/n=соnst.
При продольном точении заготовка вращается, а резцу предаётся движение ножа вдоль оси вращения. Непрерывная винтовая стружка имеет постоянное сечение. Резцы для предварительного чёрного точения имеют полукруглое лезвие радиусом r =5…35 мм, для чистового – прямолинейное главное лезвие, расположенное под углом φ п=40…50° к оси вращения заготовки (главный угол в плане), и вспомогательное лезвие под углом φ 1=2…5°. Геометрия резца в главной секущей плоскости n-n: α =10..12°; β =25..40°; Ã =55..40°; δ =35..50°. проекция главного лезвия на плоскость m-m наклонена по отношению к проекции на эту же плоскость радиуса вращения, проведённого к вершине резца под углом ε =3..5° (угол скоса при наклоне главного лезвия). Размеры стружки h=Un ∙ sinφ п; В=Н/sinφ п, где Н (мм) – глубина точения Н=R1-R2. Резец оставляет на обработанной поверхности кинематические неровности, форма которых в продольном сечении копирует вершину резца. Длина волны ℓ =Un=Uz, глубина волны: для резца, вершина которого не закруглена y = tgφ п∙ tgφ 1/(tgφ п +tgφ 1); для резца с закруглённой вершиной y≈ Unª /(8∙ r). На практике при черновом точении Un=1, 5…2 (мм), при чистовом Un≤ 0, 8 мм. Силу воздействия S резца на заготовку раскладывают на три составляющие: касательную Р, радиальную R и осевую А. Если ε =0°, то R и А- составляющие нормальной силы Q: R =Q∙ cosφ п=m∙ Р∙ cosφ п; А=Q∙ sinφ п=m∙ Р∙ sinφ п, где m- переходный множитель, зависящий от толщины стружки h. Мощность резания Nрез=Кт∙ апопр∙ π ∙ (Rª 1-Rª 2)∙ U/60 (Вт). Отсюда определяют касательную силу Р=Nрез/υ (Н). Материал резцов быстрорежущая сталь Р18.
Сверление древесины
При конической заточке сверла его режущая часть имеет два режущих лезвия 1, передние поверхности 4 винтовых канавок, задние поверхности 5 (задний угол α резцов положительный), пересечение которых образует лезвие 6 – перемычку. Главное лезвие срезает со дна отверстия стружку, размер которой вдоль оси сверла равен Uz, а толщина h= Uz∙ sinφ, где 2φ =85° - угол сверла при вершине. Боковую поверхность на участке 1′ и 2′, формирует вспомогательная режущая кромка, образованная пересечением передней поверхности и ленточки. По направлению оси вращения относительно волокон различают сверление продольное (в торец детали) и поперечное (в пласть). Условия работы бокового лезвия при поперечном сверлении неудовлетворительны: почти полпути за оборот оно будет производить продольно торцевое резание против волокон (самое низкое качество обработки). Поэтому свёрла с конической заточкой используют только при продольном сверлении. При поперечном сверлении используют свёрла, имеющими заточку с направляющим центром 7 и подрезателями 8. Главное режущее лезвие 1 расположено в плоскости, перпендикулярной оси вращения. Главное лезвие резца с подрезателями и центром срезают стружку толщиной h=Uz, предварительно отделённую от боковой поверхности отверстия впереди идущим подрезателем. Направляющий центр, ось которого совпадает с осью сверла, обеспечивает дополнительное (к ленточкам) его центрирование.
Шероховатость поверхности после сверления характеризуют высотой неровностей Rzmax=60…320 (мкм)при подаче Un=0, 7..2, 2 (мм) для мягкой и Un=0, 1...0, 5 для твёрдой древесины Мощность резания при сверлении Nрез=Кт∙ апопр∙ (π ∙ Dª /4∙ U/60), где D – диаметр сверления (мм). Окружная касательная сила резания, приведённая к точке сверла с радиусом D/2: Рокр= Nрез/υ, где υ – наибольшая скорость резания (м/с). Крутящий момент на сверлильном шпинделе Мкр= Рокр∙ (D/2) (Н∙ мм). Осевое усилие подачи Рос=mос∙ Рокр, где mос – переходный множитель. Для сверлильных работ также используют зенкеры – инструмент применяемый для частичного рассверливания отверстий, например, для выбора углубления под головку винта, или формирования фасочных выемок в детали. Материал свёрл – инструментальная легированная сталь Р6М5, или сталь 9ХС. Материал пластинок из твёрдого сплава ВК8 илиВК15. Гнездообразование (долбление). Строгание древесины.
Имеются две основные схеме: цепного фрезерования и гнездовой фрезой. Цепное фрезерование осуществляется резцами, расположенными на шарнирно связанных звеньях цепи. При её движении вдоль направляющей линейки 1 траектория главного движения прямолинейная, при огибании натяжного ролика 2 – окружность. Если L= d1, то достаточно одной осевой подачи со скоростью Uос. L> d требуется боковое перемещение со скоростью Uбок. Скорость резания υ =t∙ z∙ n/(60∙ 1000) (м/с), где t- шаг зубьев ведущей звёздочки (равен двойному шагу зубьев цепи) (мм); z =4- число зубьев ведущей звёздочки; n-частота её вращения (мин‾ ¹ ). Подача на зуб (мм): Uzос= Uос∙ t/(60∙ υ ); Uzбок= Uбок∙ t/(60∙ υ ). Нормальный режим долбления: υ =4…10 (м/с); Uz= 0, 02…0, 2 (мм). Шероховатость поверхности характеризуют максимальной высотой неровностей Rz max (порядка 200 мкм). Мощность резания (Вт): N рез.ос=Кт.ос∙ апопр.ос [В∙ d(Uос/60)]; Nрез.бок =Кт.бок∙ апопр.бок[В∙ Н(Uбок/60)] где В и Н – ширина и глубина гнезда (мм). Гнездовая фреза – многолезвийная плоская пластина с зубьями на торцовой и боковой стороне. Толщина гнездовой фрезы, как и фрезерной цепочки, определяет ширину гнезда. Движения резания происходит по замкнутой кривой (эллипс, окружность) со средней скоростью υ ср. Движение подачи –прямолинейное со скоростью Uос. Нижние зубья фрезы режут, боковые –удаляют стружку из гнезда. Подача на один цикл движения резания и Un.ос=Uос∙ 1000/n= hmax, где n (мин‾ ¹ ) – частота циклов резания. Мощность резания рассчитывают подобно цилиндрическому закрытому продольно-торовому фрезерованию. Длинна получаемого гнезда L=ℓ +2r, где ℓ - ширина гнезда (мм), r- горизонтальная амплитуда колебаний фрезы в движении резания (мм). Минимальная ширина гнезда Вmin=3 (мм). Точность обработки высокая, шероховатость стенок не хуже Rzmax=32 (мкм).
Угол резания δ минимален, поэтому малы α =1…2˚ и β =16…17˚. Резание обязательно ведётся со скосом ножа к оси кряжа и направлению волокон: φ с=78…80˚. При этом уменьшается усилия на входе ножа в кряж и достигается более гладкая поверхность шпона. Оптимальная установка прижимной линейки 2 относительно ножа 1 характеризуется углом ε =42˚ при любых условиях резания и степенью обжима Δ = (h- h щ ∙ 100%/ h (%), где h-номинальная толщина сырого шпона (мм); h щ –просвет между линейкой и ножом (мм). Δ =5…20%. Для силовых расчётов строгания используют те же зависимости и справочные материалы, что и для лущения. Конструкция ножей также аналогична лущильным ножам. Шероховатость поверхности Rzmax ≤ 100(мкм). Разнотолщинность для шпона толщиной 0, 6 и 0, 8(мм): ± 0, 04 (мм); для шпона толщиной 1 (мм) ± 0, 08 (мм). Лущение древесины.
a и d должны быть минимальными. b= 18…25о, a = 0, 5…1о для D = 100…300мм и a = 2…3о для больших D. Кинематика лущильных станков для для лущения чураков больших диаметров, предусматривает уменьшение a в процессе лущения. По мере лущения увеличивается и меняются рабочие углы ap= a-jg; gp=g+jg; dp= d-jg (особое внимание обращают на ap из-за малости a).
Качество лущеного шпона оценивают по величине Rzmax (до 200 мкм для лиственных пород и до 320 мкм для хвойных) и разнотолщинности Δ h (0, 05 для толщины 0, 95мм и 0, 10 для 0, 95мм.). При лущении с обжимом стружки силы на ноже Рн и Qн больше сил на ноже 1. Р и Q при резании без обжатия на величину Рдн и Qдн – дополнительных касательной и нормальной сил на ноже, вызванных давлением прижимной линейки. Прижимная линейка 3 действует с силой, которую раскидывают на составляющие Рп (всегда сонаправлена Рн) и Qп (всегда направлена в сторону чурака) по тем же направлениям, что и сила на ноже Sн. Sн + Sп = Sбл – единственная сила, с которой блок нож-прижимная линейка действует при резании на чурак. Касательная и нормальная составляющие. Рбл = Рп + Рн; Qбл = Qп – Qн. При лущении без обжима стружки касательная сила Р равна произведению удельной силы резания К на площадь поперечного сечения стружки Вh: Р = КВh. Касательная сила Рбл = К табл . Анапр . Вh, где К табл – табличное значение удельной силы резания гидротермически обработанной древесины с обжимом стружки прижимной линейкой (Н1…). Нормальная сила Qбл = mΔ Рбл, где mΔ ~ 1, 1 – переходный множитель. Мощьность лущения (Вт) с обжимом стружки Nрез = Рбл .V. Лущильный нож представляет собой пластину с вырезами для крепежных болтов, изготовленную из двухслойной стали (компаунда): рабочая часть из легированной стали 9Х5ВФ или 9ХС, основание из мягкой конструкционной стали 15. m = (1/4…1/3). S; n = (1/3 … 1/2). Вн.
Твердость режущей части после термообработки должна быть в пределах 56 … 62 HRC.
Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1007; Нарушение авторского права страницы