Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Сравнение и характеристики шин.



XT-Bus – шина архитектуры XT – первая в семействе IBM PC. Относительно проста, поддерживает обмен 8-разрядными данными внутри 20-разрядного (1 Мб) адресного пространства (обозначается как " разрядность 8/20" ), работает на частоте 4.77 МГц. Совместное использование линий IRQ в общем случае невозможно. Конструктивно оформлена в 62-контактних разъемах.

ISA (Industry Standard Architecture, архитектура промышленного стандарта) – основная шина на компьютерах типа PC AT (другое название – AT-Bus). Является расширением XT-Bus, разрядность – 16/24 (16 Мб), тактовая частота – 8 МГц, предельная пропускная способность – 5.55 Мб/с. Разделение IRQ также невозможно. Возможна нестандартная организация Bus Mastering, но для этого нужен запрограммированный 16-разрядный канал DMA. Конструктив – 62-контактный разъем XT-Bus с прилегающим к нему 36-контактным разъемом расширения.

EISA (Enhanced ISA, расширенная ISA) – функциональное и конструктивное расширение ISA. Внешне разъемы имеют такой же вид, как и ISA, и в них могут вставляться платы ISA, но в глубине разъема находятся дополнительные ряды контактов EISA, а платы EISA имеют более высокую ножевую часть разъема с дополнительными рядами контактов. Разрядность – 32/32 (адресное пространство – 4 Гб), работает также на частоте 8 МГц. Предельная пропускная способность – 32 Мб/с. Поддерживает Bus Mastering - режим управления шиной со стороны любого из устройств на шине, имеет систему арбитража для управления доступом устройств к шине, позволяет автоматически настраивать параметры устройств, возможно разделение каналов IRQ и DMA.

MCA (Micro Channel Architecture, микроканальная архитектура) – шина компьютеров PS/2 фирмы IBM. Не совместима ни с одной другой, разрядность – 32/32, (базовая - 8/24, остальные – в качестве расширений). Поддерживает Bus Mastering, имеет арбитраж и автоматическую конфигурацию, синхронная (жестко фиксирована длительность цикла обмена), предельная пропускная способность – 40 Мб/с. Конструктив – одно-трехсекционный разъем (такой же, как у VLB). Первая, основная, секция – 8-разрядная (90 контактов), вторая – 16-разрядное расширение (22 контакта), третья – 32-разрядное расширение (52 контакта). В основной секции предусмотрены линии для передачи звуковых сигналов. Дополнительно рядом с одним из разъемов может устанавливаться разъем видеорасширения (20 контактов). EISA и MCA во многом параллельны, появление EISA было обусловлено собственностью IBM на архитектуру MCA.

VLB (VESA Local Bus, локальная шина стандарта VESA) – 32-разрядное дополнение к шине ISA. Конструктивно представляет собой дополнительный разъем (116-контактный, как у MCA) при разъеме ISA. Разрядность – 32/32, тактовая частота – 25..50 МГц, предельная скорость обмена – 130 Мб/с. Электрически выполнена в виде расширения локальной шины процессора – большинство входных и выходных сигналов процессора передаются непосредственно VLB-платам без промежуточной буферизации. Из-за этого возрастает нагрузка на выходные каскады процессора, ухудшается качество сигналов на локальной шине и снижается надежность обмена по ней. Поэтому VLB имеет жесткое ограничение на количество устанавливаемых устройств: при 33 МГц – три, 40 МГц – два, и при 50 МГц – одно, причем желательно интегрированное в системную плату.

PCI (Peripheral Component Interconnect, соединение внешних компонент) – развитие VLB в сторону EISA/MCA. Не совместима ни с какими другими, разрядность – 32/32 (расширенный вариант – 64/64), тактовая частота – до 33 МГц (PCI 2.1 – до 66 МГц), пропускная способность – до 132 Мб/с (264 Мб/с для 32/32 на 66 МГц и 528 Мб/с для 64/64 на 66 МГц), поддержка Bus Mastering и автоконфигурации. Количество разъемов шины на одном сегменте ограничего четырьмя. Сегментов может быть несколько, они соединяются друг с другом посредством мостов (bridge). Сегменты могут объединяться в различные топологии (дерево, звезда и т.п.). Самая популярная шина в настоящее время; используется также на компьютерах, отличных от IBM-совместимых. Разъем похож на MCA/VLB, но чуть длиннее (124 контакта). 64-разрядный разъем имеет дополнительную 64-контактную секцию с собственным ключом. Все разъемы и карты к ним делятся на поддерживающие уровни сигналов 5 В, 3.3 В и универсальные; первые два типа должны соответствовать друг другу, универсальные карты ставятся в любой разъем.

Существует также расширение MediaBus, введенное фирмой ASUSTek – дополнительный разъем содержит сигналы шины ISA.

PCMCIA (Personal Computer Memory Card International Association, ассоциация производителей плат памяти персональных компьютеров) – внешняя шина компьютеров класса NoteBook. Другое название модуля PCMCIA – PC Card. Предельно проста, разрядность – 16/26 (адресное пространство – 64 Мб), поддерживает автоконфигурацию, возможно подключение и отключение устройств в процессе работы компьютера. Конструктив – миниатюрный 68-контактный разъем. Контакты питания сделаны более длинными, что позволяет вставлять и вынимать карту при включенном питании компьютера.

Основные микросхемы IBM PC

Все интегральные микросхемы состоят из огромного множества микроскопических полупроводниковых транзисторов и других элементов радио цепей, которые составляют сложные схемы внутри корпуса микросхемы.

Базовой схемой всех упраляющих микросхем явлеятся схема RS – триггера, реализованного с помощью логических элементов И - НЕ или ИЛИ - НЕ с соответствующими обратными связями и позволяет хранить один бит цифровой информации.

При подаче на вход R уровня лог. «1» триггер принимает состояние логического «0», а при подаче управляющего сигнала «1» на вход S - состояние «1». Следует отметить также, что если до подачи управляющего сигнала, например, на вход R, триггер находился в состоянии логического «0», его состояние не изменится и после подачи сигнала «1» на вход R. Если на обоих входах триггера имеются уровни логического «0» – это состояние соответствует режиму хранения, и триггер сохраняет предыдущее состояние. При подаче на входы R и S одновременно уровня «1» триггер будет находиться в неопределенном состоянии, поэтому такое сочетание сигналов R и S называется запрещенной комбинацией управляющих.

Главной микросхемой PC является микропроцессор. Рядом с микропроцессором предусмотрено место для микросхемы 80X87, числового сопроцессора, или процессора числовых данных, с его специальными возможностями по выполнению очень быстрых (и с повышенной точностью) вычислений над числами с плавающей точкой.

Среди специализированных микросхем можно выделить генератор тактовых (или синхронизирующих) сигналов. В IBM PC АТ это микросхема 88248. В микросхеме генератора тактовых сигналов используется кварцевый кристалл в качестве точной основы для синхронизации. Генератор тактовых сигналов понижает частоту колебаний кристалла до частоты, требующейся компьютеру, и преобразует их в форму, приемлемую для использования другими компонентами схемы.

С генератором тактовых сигналов близко связана микросхема программируемого таймера, идентифицируемая номером 8253. Программируемый таймер может порождать другие сигналы синхронизации.

Некоторые компоненты компьютера могут обмениваться данными непосредственно через компьютерную память, без участия микропроцессора. Такой процесс называется прямым доступом к памяти (Bus Mastering). Имеется специальная микросхема, предназначенная для управления этим процессом, которая называется контроллером прямого доступа к памяти (номер микросхемы – 8237).

Прерывания контролируются специальной микросхемой 8259. В компьютерах прерывания поступают с различной степенью важности, и одной из задач контроллера прерываний является отслеживания их в порядке приоритетов.

К другим основным микросхемам относится микросхема программируемого интерфейса периферийных устройств (номер – 8255). Эта микросхема следит за работой некоторых из более простых периферийных устройств компьютера. Однако большинство периферийных устройств компьютера являются слишком сложными для того, чтобы они могли регулироваться простой обычной схемой. Для управления такими устройствами (дисковые накопители, монитор и т.д.) используются специальные контроллеры.

BIOS

Одной из главных микросхем системной платы является микросхема BIOS – это основная система ввода/вывода (Basic Input/Output System), «зашитая» в ПЗУ (отсюда название ROM – read only memory BIOS). Она представляет собой набор программ проверки и обслуживания аппаратуры компьютера, и исполняет роль посредника между операционной системой и аппаратурой. BIOS получает управление при включении и «сбросе» системной платы, тестирует саму плату и основные блоки компьютера (видеоадаптер, клавиатуру, контроллеры дисков и портов ввода/вывода), настраивает Chipset платы и загружает внешнюю операционную систему. При работе под DOS/Windows BIOS управляет основными устройствами, при работе под OS/2, UNIX, WinNT BIOS практически не используется, выполняя лишь начальную проверку и настройку.

Обычно на системной плате установлено только ПЗУ с системным (Main, System) BIOS, отвечающим за саму плату и контроллеры FDD, HDD, портов и клавиатуры; в системный BIOS практически всегда входит System Setup – программа настройки системы. Видеоадаптеры и контроллеры HDD с интерфейсом ST-506 (MFM) и SCSI имеют собственные BIOS в отдельных ПЗУ; их также могут иметь другие платы – интеллектуальные контроллеры дисков и портов, сетевые карты и т.п.

Обычно BIOS для современных системных плат разрабатывается одной из специализирующихся на этом фирм, однако некоторые производители плат сами разрабатывают BIOS'ы для них. Иногда для одной и той же платы имеются версии BIOS от разных производителей – в этом случае допускается копировать «прошивки» или заменять микросхемы ПЗУ; в общем же случае каждая версия BIOS привязана к конкретной модели платы.

Раньше BIOS «зашивался» в однократно программируемые ПЗУ либо в ПЗУ с ультрафиолетовым стиранием; сейчас в основном выпускаются платы с электрически перепрограммируемыми ПЗУ (Flash ROM), которые допускают перешивку BIOS средствами самой платы. Это позволяет исправлять заводские ошибки в BIOS, изменять заводские умолчания, программировать собственные экранные заставки и т.п.

Тип микросхемы ПЗУ обычно можно определить по маркировке: 27xxxx – обычное ПЗУ, 28xxxx или 29xxxx – flash. Если на корпусе микросхемы 27xxxx есть прозрачное окно – это ПЗУ с ультрафиолетовым стиранием, которое можно «перешить» программатором; если окна нет – это однократно программируемое ПЗУ, которое в общем случае можно лишь заменить на другое.


Микропроцессоры (Лекция 3)

Главной микросхемой ПК является микропроцессор – интегральная схема, выполняющая функции центрального основного вычисляющего элемента ЭВМ.

Выполняемые микропроцессором команды предусматривают, обычно, арифметические действия, логические операции, передачу управления и перемещение данных между регистрами, оперативной памятью и портами ввода-вывода. С внешними устройствами микропроцессор сообщается благодаря своим шинам адреса, данных и управления, выведенным на специальные контакты корпуса микросхемы.

Классификация процессоров

По аппаратной реализации:

1. Однокристальные МП (одна БИС)

2. Многокристальные (несколько БИС)

3. Секционные (несколько БИС с возможностью аппаратного наращивания разрядности процессора)

По архитектуре системы команд:

Двумя основными архитектурами набора команд, используемыми компьютерной промышленностью на современном этапе развития вычислительной техники, являются архитектуры CISC (CISC – Complete Instruction Set Computer) и RISC (RISC – Reduced Instruction Set Computer).

Для CISC-процессоров характерно: сравнительно небольшое число регистров общего назначения; большое количество машинных команд, некоторые из которых нагружены аналогично операторам высокоуровневых языков программирования и выполняются за много тактов; большое количество методов адресации; большое количество форматов команд различной разрядности; преобладание двухадресного формата команд; наличие команд обработки типа регистр-память.(IBM 360, IBM ES/9000, Intel x86 и модели архитектуры Pentium и AMD).

Система команд RISC-процессоров разрабатывалась таким образом, чтобы выполнение любой команды занимало небольшое количество машинных тактов (предпочтительно один машинный такт). Сама логика выполнения команд с целью повышения производительности ориентировалась на аппаратную, а не на микропрограммную реализацию. Чтобы упростить логику декодирования команд использовались команды фиксированной длины и фиксированного формата.

В типовых RISC-процессорах реализуются 32 или большее число регистров по сравнению с 8-16 регистрами в CISC-архитектурах, что позволяет большему объему данных храниться в регистрах на процессорном кристалле большее время и упрощает работу компилятора по распределению регистров под переменные.

В разработках компании Intel (Pentium P54C, P6), а также ее конкурентов (AMD R5, Cyrix M1, NexGen Nx586 и др.) широко используются идеи, реализованные в RISC-микропроцессорах, так что многие различия между CISC и RISC стираются.

Архитектура и система команд процессоров цифровой обработки сигналов (Digital Signal Processor) ориентирована на быстрое выполнение программ, реализующих определенный класс алгоритмов (цифровая фильтрация, свертка, корреляция, преобразование Фурье, адаптивная фильтрация, обработка изображений, анализ и синтез речи). Ключевые особенности: операция умножения с накоплением, выполняемая за один процессорный цикл, конвейерное выполнение программ, раздельные память программы и память данных, вспомогательные вычислительные блоки для вычисления адресов операндов за один машинный цикл.

За последние годы сформировалось несколько направлений, или семейств массовых высокопроизводительных микропроцессоров, конкурирующих друг с другом на рынке применений для десктопных компьютеров. Каждое семейство имеет свою микроархитектуру, или внутреннюю организацию процессорного ядра, разработанную на основе представлений её создателей о потребностях пользователей, критериях оценки производительности и прочих потребительских качеств, перспективах развития и рыночных тенденциях. Эти представления влияют на принятие разработчиками принципиальных решений о тех или иных ключевых архитектурных особенностях процессора и о различных компромиссах, заложенных в архитектуру. Несмотря на то, что общая организация суперскалярного процессора с внеочередным исполнением операций давно устоялась и воспроизводится в каждой современной архитектуре, имеется также большое количество принципиальных отличий между семействами. По существу, воспроизводится только общая структура процессора – организация его отдельных подсистем различается весьма значительно.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-30; Просмотров: 785; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь