Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Устойчивость и репарация генетического материала



 

Устойчивость к изменениям генетического материала обеспечивается:

1. Диплоидным набором хромосом.

2. Двойной спиралью ДНК.

3. Вырожденностью (избыточностью) генетического кода

4. Повтором некоторых генов.

5. Репарацией нарушений структуры ДНК

Наличие механизмов репарации – обязательное условие существования биологических существ.

Репарация генетического материала это процесс, обеспечивающий восстановление поврежденной структуры молекулы ДНК.

В ДНК клетки ежедневно происходит множество случайных изменений.

Большинство эффективно исправляются (репарируются) с помощью специальных ферментных систем.

Впервые репарация молекулы ДНК была установлена в 1948 году. А в 1962 году был описан один из способов репарации – световая репарация или фотореактивация.

Было установлено, что при ультрафиолетовом облучении вирусов-фагов, бактерий и простейших наблюдается резкое снижение их жизнедеятельности, даже гибель.

Если воздействовать на них видимым светом, то выживаемость их значительно увеличивается.

Оказалось, что под действием ультрафиолета в молекуле ДНК образуются димеры (химические связи между двумя основаниями одной цепочки, чаще Т-Т), образование димеров препятствует считыванию информации.

Видимый свет активирует ферменты, разрушающие димеры.

Второй способ репарации – темновая репарация, была изучена в 50-е годы ХХ века.

Темновая репарацияпротекает в четыре стадии с участием четырех групп ферментов. Ферменты образовались в ходе эволюции и направлены на поддержание стабильности генетической информации клетки.

1. Фермент эндонуклеаза находит поврежденный участок и рядом с ним разрывает нить ДНК.

2. Фермент эктонуклеаза «вырезает» (удаляет) поврежденный участок.

3. ДНК-полимераза по принципу комплементарности синтезирует фрагмент ДНК на месте разрушенного.

4. Лигаза «сшивает» синтезированный фрагмент с основной нитью ДНК.

Доказана возможность репарации ДНК при повреждении обеих ее нитей. При этом информация может быть получена с и-РНК (фермент ревертаза).

 

Закон гомологических рядов наследственной изменчивости Н.И.Вавилова

Известно, что мутирование происходит в различных направлениях. Однако, это многообразие подчиняется определенной закономерности, обнаруженной в 1920 году Н.И.Вавиловым. Он сформулировал закон гомологических рядов наследственной изменчивости: «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что зная ряд форм в пределах одного вида, можно предвидеть существование параллельных форм у других видов и родов».

Можно сказать, что у родственных видов, имеющих общее происхождение возникают сходные мутации.

Одни и те же болезни встречаются у животных и у человека. Так, например, альбинизм наблюдается во всех классах позвоночных животных и человека. Брахидактилия (короткопалость) отмечена у крыс, овец, собак, человека. Мышечная дистрофия – у мышей, крыс, лошадей, человека.

Закон гомологических рядов позволяет предвидеть возможность появления мутаций, которые могут быть использованы в селекции для создания новых ценных для хозяйства форм.

 

Лекция 13

Методы изучения генетики человека

План

1.Генеалогический метод.

2.Близнецовый метод.

3.Метод дерматоглифики.

4.Цитогенетический метод.

5.Метод гибридизации соматических клеток.

6.Онтогенетический метод.

7.Популяционно-статистический метод.

8.Метод моделирования.

9.Иммунологический метод.

10.Биохимический метод.

Генеалогический метод

Типы наследования и формы проявления генетических задатков у человека весьма многообразны и для дифференциации между ними требуются специальные методы анализа, в первую очередь – генеалогический, предложенный Ф.Гальтоном.

Генеалогический метод или изучение родословных предусматривает прослеживание признака в семье или роду с указанием типа родственных связей между членами родословной. В медицинской генетике этот метод обычно называют клинико-генеалогическим, поскольку речь идет о наблюдении патологических признаков с помощью приёмов клинического обследования. Генеалогический метод относится к наиболее универсальным методам в генетике человека. Он широко применяется при решении теоретических и практических проблем:

1) для установления наследственного характера признака,

2) при определении типа наследования и пенетрантности генотипа,

3) выявление сцепления генов и картирование хромосом,

4) при изучении интенсивности мутационного процесса,

5) при расшифровке механизмов взаимодействия генов,

6) при медико-генетическом консультировании.

Суть генеалогического метода сводится к выяснению родственных связей и прослеживанию признака среди близких и дальних прямых и непрямых родственников. Технически он складывается из двух этапов: составления родословных и генеалогического анализа.

Составление родословной

Сбор сведений о семье начинается с пробанда, которым называется лицо, первым попавшее в поле зрения исследователя.

Дети одной родительской пары (родные братья и сестры) называются сибсами. Семьей в узком смысле, или ядерной семьей, называют родительскую пару и их детей. Более широкий круг кровных родственников лучше обозначать термином «род». Чем больше поколений вовлекается в родословную, тем она обширнее. Это влечёт за собой неточность полученных сведений и, следовательно, неточность родословной в целом. Часто люди не знают даже числа своих двоюродных братьев и сестер, не говоря уже о каких-то признаках у них и их детей.

Для наглядности готовят графическое изображение родословной. Для этого обычно пользуются стандартными символами. Если рассматриваемых признаков в родословной много, то можно прибегать к буквенным или штриховым различиям внутри символов. Схема родословной обязательно сопровождается описанием обозначений под рисунком – легендой, что исключает возможность неправильных истолкований.

Генеалогический анализ

Целью генеалогического анализа является установление генетических закономерностей.

1 этап установление наследственного характера признака. Если в родословной встречается один и тот же признак несколько раз, то можно думать о наследственной его природе. Однако надо прежде всего исключить возможность экзогенного накопления случаев в семье или роду. Например, если один и тот же патогенный фактор действовал на женщину во время всех беременностей, то у нее могут родиться несколько детей с одинаковыми аномалиями. Или же какой-то фактор действовал на многих членов семьи, необходимо сличить действие сходных внешних факторов. С помощью генеалогического метода были описаны все наследственные болезни.

2 этап установление типа наследования и пенетрантности гена. Для этого используют принципы как генетического анализа, так и статистические методы обработки данных из родословной.

3 этап определение групп сцепления и картирования хромосом, до недавнего времени основывающегося только на генеалогическом методе. Выясняют сцепленные признаки и процесс кроссинговера. Этому способствуют разработанные математические методы.

4 этап изучение мутационного процесса. Он применяется в трех направлениях: при изучении механизмов возникновения мутаций, интенсивности мутационного процесса и факторов, вызывающих мутации. Особенно широко генеалогический метод применяется при изучении спонтанных мутаций, когда надо различать «спорадически» возникшие случаи от «семейных».

5 этап анализ взаимодействия генов в клинической генетике был сделан С.Н.Давиденковым (1934, 1947) по анализу полиморфизма заболеваний нервной системы.

6 этап в медико-генетическом консультировании для составления прогноза без генеалогического метода обойтись нельзя. Выясняют гомо- или гетерозиготность родителей и рассматривают вероятность рождения детей с теми или иными признаками.

 

 


Поделиться:



Популярное:

  1. III. Изучение нового материала.
  2. III. По изменению генетического материала мутации подразделяют на следующие: генные, хромосомные перестройки, геномные.
  3. Активация вашего идеального генетического кода для обретения абсолютного здоровья и благополучия
  4. Алгоритм получения материала для исследования
  5. Анализ эмпирического материала и интерпретация результатов
  6. АЭРОДИНАМИЧЕСКИЙ ФОКУС. ПРОДОЛЬНАЯ УСТОЙЧИВОСТЬ ПО ПЕРЕГРУЗКЕ
  7. Блок наглядно-дидактического материала
  8. В зависимости от особенностей запоминания и воспроизведения материала
  9. Взятие материала на кишечную группу
  10. Вопрос. Устойчивость автомобиля против заноса.
  11. Выбор материала режущей части инструмента.
  12. Дезоксирибонуклеиновая кислота, ее строение и свойства. Мономеры ДНК. Способы соединения нуклеотидов. Комплементарность нуклеотидов. Антипараллельные полинуклеотидные цепи. Репликация и репарация.


Последнее изменение этой страницы: 2016-06-04; Просмотров: 1494; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь