Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Резистивные материалы. Углеродные композиты, бетэл, ЭКОМ, электропроводящие полимеры.
Металлические резистивные материалы Из металлических материалов для резисторов наибольшее распространение получили материалы на основе никеля, хрома и железа, т.н нихромы, и родственные им материалы на основе железа, хрома и алюминия, т.н. фехрали. В обозначении марки буква Х означает хром, буква Н-никель, буква Ю - алюминий. Цифра после каждой буквы - процентное содержание этого элемента (массовые проценты). Железо обычно составляет основу, его не обозначают, а его содержание составляет остальное, т.е. сколько нужно, чтобы дополнить до 100 %. Применение этих сплавов для нагревателей и резисторов обусловлено двумя главными обстоятельствами. Во первых, их удельное сопротивление примерно в 40-60 раз превышает удельное сопротивление проводников - алюминия и меди. Это связано с нарушением структуры материала в сплаве нескольких металлов. Во вторых, на поверхности этих материалов образуется прочная, химически стойкая пленка из окислов, что обеспечивает высокую жаростойкость материалов. Температурный коэффициент удельного сопротивления нихромов положителен, т.е. с ростом температуры удельное сопротивление увеличивается. Это означает, что при использовании нихрома в качестве нагревателя мощность нагревателя по мере работы, и, соответственно прогревания самого резистивного материала, будет уменьшаться. Важно также, что температурные коэффициенты расширения у пленки оксида и у металла близки, поэтому пленка не отслаивается при включении - выключении нагревателей. Рассмотрим конкретный пример использования нихрома для создания например, электронагревателя мощностью P = 1 кВт, на напряжение U = 220 В. Воспользуемся известным выражением P = U2/R, отсюда R = U2/P. Используя формулу для пересчета R = r× l¤S, где r-удельное сопротивление, l - длина проводника, S - площадь сечения получим l¤S =U2/(P× r). Возьмем сплав Х20Н80. У него удельное сопротивление r = 1 мкОм× м. Тогда l¤S = 2202× 106/103 = 4.8× 107 1/м. Если взять диаметр провода 1 мм, площадь составит p× 10-6/4 м2, а требуемая длина примерно 40 м. Ясно, что это большая величина, можно взять провод из нихрома меньшего диаметра, например 0.5 мм. Для него длина нагревателя составит 10 м. Если свить в спираль диаметром 10 мм, количество витков составит 300, длина спирали при шаге 1 мм будет примерно 30 см. Ясно, что из такой спирали можно выполнить бытовой нагреватель. Таким образом, мы с вами научились рассчитывать нагреватель в первом приближении. На самом деле при расчете еще следует учесть, что за счет температурного коэффициента при нагревании сопротивление увеличится и, следовательно мощность уменьшится. Значит, на самом деле нужно взять проводник несколько меньшей длины. Точный расчет достаточно сложен, ограничимся оценкой. Температурный коэффициент удельного сопротивления для нихромов составляет примерно 2× 10-4 1/К. Это означает, что при нагревании на 100 К сопротивление изменится (увеличится) на 2 %. В проволочных нагревателях резистивный материал нагревается до 600-700 °С. Это приводит к росту сопротивления на 10-15%. В качестве тренировки предлагаю рассчитать трехфазный нагреватель из нихрома. Он незначительно отличается от однофазного. При соединении спиралей в звезду выражение для мощности составит Р = 3× Uф× Iф. Каждую из ветвей можно считать независимо. Для соединения в треугольник Р = Ö 3× Uл× Iл. Графит. Бетэл Вторым по значению резистивным материалом является графит. Здесь стоит упомянуть, как изменение структуры материала ведет к принципиальным изменениям характеристик. Например существует кристаллическая модификация углерода - алмаз. Это твердый, прозрачный, диэлектрический материал. Структура кристаллической решетки - тетраэдры из атомов углерода. Графит - также кристаллическая модификация углерода. Это непрозрачный, мягкий, электропроводный материал. Структура у него слоеная. В слое атомы углерода соединены в бесконечные шестичленные кольца. Каждое единичное кольцо представляет собой аналог бензольного кольца. Удельное сопротивление зависит от направления измерения. Если приложить напряжение поперек слоев, электропроводность составит 104 См/м, если приложить напряжение в плоскости слоев, электропроводность достигает 2× 106 См/м. Карбин - линейная структура из цепочек углерода С=С=С=С=С или С-Сº С-Сº С-Сº С, столбики, которых связаны между собой. Это полупроводник n-типа, энергия активации 0.64 эВ, очень прочный, sp=2200 ГПа (для сравнения прочность закаленных сталей до 700 МПа), электропроводность 10-4 См/м. В последние годы открыты новые модификации чистого углерода - т.н. фуллерены. Это соединения многих атомов углерода Сn, где n-60, 84 и т.д. Эти атомы соединены так, что образуется сфера из них, с пустотой внутри. Считается, что они обладают неожиданными свойствами и их исследования бурно продолжаются. Несколько лет назад в России был бум по получению фуллеренов. Некоторое время это был самый дорогой химический продукт, стоимость его доходила до 10 тыс. долларов за 1 грамм. Сразу несколько групп начали пытаться делать этот продукт. Появились посредники, конечные потребители были в Японии и США. Фуллерены стали находить и в пламени, и в электрическом разряде в смеси гелия с углекислым газом и в плазмотронах и т.д. Рынка еще никто не знал, предложения поставить фуллерены стали делать все мало-мальски грамотные химики. В результате менее чем за год цену сбили примерно в 100 раз. Совсем недавно появился новый способ: фуллерены стали получать с помощью электрического взрыва графитовых стерженьков, т.е. пропуская через стерженек мощный импульс тока, превращали материал в плазму, состоящую из ионизированного углерода. Оказалось, что если это делать в воде, то выход фуллеренов значительно возрастает (оставаясь все равно в пределах процента). Эти примеры исчерпывают известные к настоящему времени модификации чистого углерода. Видно, как структура материала принципиально меняет его свойства. Помимо чистого углерода известно много модификаций технического углерода. Их физические характеристики также сильно меняются в зависимости от структуры и от количества разнообразных примесей. В основе их лежит структура графита, поэтому технические углероды можно считать и техническими графитами. Из них отметим сажу, кокс, коллоидный графит, силицированный графит. Сажа характеризуется очень малым размером частиц, до десятков ангстрем. Используется как наполнитель для резин, полимеров, электропроводных композиций. Взвесь порошка графита в воде называется «аквадаг» и используется для создания электропроводящих покрытий. Тот факт, что графит имеет повышенное удельное сопротивление по сравнению с металлами позволяет применять его в промышленности для создания различных сопротивлений. Начиная с пленочных сопротивлений в радиоэлектронике, графитовой бумаги и графитовой ткани и заканчивая композиционными материалами, где частицы графита выступают в роли проводящего наполнителя. Из последних мы упомянем бетэл и более подробно остановимся на ЭКОМе. Бетэл - (бетон электротехнический) - исторически один из первых российских электропроводящих композиционных материалов. Предложен в середине шестидесятых новосибирскими учеными. Эта разработка в начале восьмидесятых была награждена государственной премией. Состоит из четырех компонентов: цемент, сажа, вода, заполнитель. Главное достоинство - дешевизна исходных компонентов и простота технологии приготовления. Сделав смесь типа обычного бетона, где вместо песка использована сажа, получаем материал с удельным сопротивлением примерно 0.01-10 Ом× м. Это означает, что например резистор номиналом 100 Ом можно изготовить из бетонного параллелепипеда размером 10 см х 10 см х 1 м. Здесь, правда возникает проблема с вводом тока в такое сопротивление. Действительно, как сделать подходящие контакты? Решение нашли достаточно простое - аквадаг. Но к аквадагу, в свою очередь трудно присоединять контакты. Поэтому используют либо прижимные контакты к аквадагу, либо внедренные в тело композита разнообразные проволочные элементы. Недостатки бетэла - нестабильное сопротивление, водопоглощение с последующим изменением многих параметров, (цементный камень продолжает расти в течение многих лет), малый коэффициент теплопроводности (~ 0.6 Вт/(м× К)). Это не дает возможности создания мощных резисторов для энергетики. Точнее резисторы такие можно создать, но они могут работать только ограниченное время. Рассмотрим этот вопрос подробнее. Во время работы резистора в нем выделяется энергия W = , где U- напряжение, R- сопротивление, t - время. У бетэла теплопроводность низка, поэтому резистор будет просто нагреваться и выделяющаяся электрическая энергия будет превращаться в тепловую энергию. Q =c× m× ( Tкон -Tнач), где с - удельная теплоемкость материала, m - масса резистора, Tкон, Tнач - начальная и конечная температуры. Приравнивая W и Q и считая Tкон соответствующее теплостойкости или хотя бы температуростойкости материала, видно, что если нет теплопроводности (т.е. теплоотвода), то резистор за конечное может нагреться до температур, при которых он начнет разрушаться. Известны случаи, когда бетэловые резисторы взрывались в процессе включения в эксплуатацию под большую нагрузку. Предполагается, что это происходило при попадании влаги внутрь резистора, что приводило к бурному вскипанию воды внутри материала при нагреве выше точки кипения после включения резистора под нагрузку. Опыт показывает, что бетэловый резистор можно включать только на несколько секунд. Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 1408; Нарушение авторского права страницы