Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация, принцип работы и устройство автомобильных двигателей (Часть 7)



План лекции

1.3.10. Система зажигания

1.3.11. Система пуска

 

Система зажигания

Система зажигания предназначена для воспламенения топливовоздушной смеси бензинового (газового) двигателя. Воспламенение смеси происходит от искры, поэтому другое наименование системы – искровая система зажигания, а двигателя – двигатель с искровым зажиганием (ДсИЗ).

В зависимости от способа управления процессом зажигания различают следующие типы систем зажигания: контактная, бесконтактная (транзисторная) и электронная (микропроцессорная). Не смотря на различия в конструкции можно выделить следующее общее устройство системы зажигания:

1. источник питания (автомобильный генератор и аккумуляторная батарея);

2. выключатель зажигания;

3. устройство управления накоплением энергии (в разных системах зажигания эту роль выполняет прерыватель, транзисторный коммутатор или электронный блок управления);

4. накопитель энергии (катушка зажигания);

5. устройство распределения энергии по цилиндрам (механический распределитель или электронный блок управления );

6. высоковольтные провода;

7. свечи зажигания.

Принцип работы системы зажигания заключается в накоплении и преобразовании катушкой зажигания низкого напряжения (12В) электрической сети автомобиля в высокое напряжение (до 30000В), распределении и передаче высокого напряжения к соответствующей свече зажигания и образовании в нужный момент искры на свече зажигания. В работе системы зажигания можно выделить следующие этапы: накопление электрической энергии, преобразование энергии, распределение энергии по свечам зажигания, образование искры, воспламенение топливно-воздушной смеси.

В контактной системе зажигания (см. рис. 1.49) управление накоплением и распределение электрической энергии по цилиндрам осуществляется механическим устройством - прерывателем-распределителем.

1. Рис. 1.49. Схема контактной системы зажигания:

1 – генератор; 2 – выключатель зажигания; 3 – прерыватель-распределитель («трамблер»); 4 – свечи зажигания; 5 – катушка зажигания; 6 – аккумуляторная батарея

Прерыватель предназначен для размыкания цепи низкого напряжения (цепи первичной обмотки катушки зажигания). При размыкании контактов во вторичной цепи катушки зажигания наводится высокое напряжение. Для защиты контактов от обгорания в цепь параллельно контактам включен конденсатор.

Катушка зажигания служит для преобразования тока низкого напряжения в ток высокого напряжения. Катушка имеет две обмотки – низкого и высокого напряжения.

Распределитель обеспечивает распределение тока высокого напряжения по свечам цилиндров двигателя. Распределитель состоит из ротора («бегунка») и крышки. В крышке выполнены центральный и боковые контакты. На центральный контакт подается высокое напряжение от катушки зажигания. Через боковые контакты высокое напряжение передается на соответствующие свечи зажигания. Прерыватель и распределитель конструктивно объединены в одном корпусе и приводятся в действие от коленчатого вала двигателя.

Центробежный регулятор опережения зажигания служит для изменения угла опережения зажигания (угла поворота коленчатого вала двигателя, при котором происходит подача тока высокого напряжения на свечи зажигания) в зависимости от числа оборотов коленчатого вала двигателя. Конструктивно центробежный регулятор состоит из двух грузиков. Грузики воздействуют на подвижную пластину, на которой расположены кулачки прерывателя. Установка угла опережения зажигания производится регулировкой положения прерывателя-распределителя в двигателе.

Вакуумный регулятор опережения зажигания обеспечивает изменение угла опережения зажигания в зависимости от нагрузки на двигатель. Нагрузка на двигатель определяется степенью открытия дроссельной заслонки (положением педали газа). Вакуумный регулятор соединен с полостью за дроссельной заслонкой и, в зависимости от степени разряжения в полости, изменяет угол опережения зажигания.

Высоковольтные провода служат для подачи тока высокого напряжения от катушки зажигания к распределителю и от распределителя на свечи зажигания.

Свеча зажигания предназначена для воспламенения топливно-воздушной смеси путем образования искрового разряда.

Принцип работы контактной системы зажигания заключается в следующем. При замкнутом контакте прерывателя ток низкого напряжения протекает по первичной обмотке катушки зажигания. При размыкании контактов во вторичной обмотке катушки зажигания индуцируется ток высокого напряжения. По высоковольтным проводам ток высокого напряжения подается на крышку распределителя, от которой распределяется по соответствующим свечам зажигания с определенным углом опережения зажигания. При увеличении оборотов коленчатого вала двигателя, увеличиваются обороты вала прерывателя распределителя. Грузики центробежного регулятора опережения зажигания под действием центробежной силы расходятся, перемещая подвижную платину с кулачками прерывателя. Контакты прерывателя размыкаются раньше, тем самым увеличивается угол опережения зажигания. При уменьшении оборотов коленчатого вала двигателя угол опережения зажигания уменьшается.

Дальнейшим развитием контактной системы зажигания является контактно-транзисторная система зажигания. В цепи первичной обмотки катушки зажигания применен транзисторный коммутатор, управляемый контактами прерывателя. В данной системе за счет применения транзисторного коммутатора уменьшена сила тока в цепи первичной обмотки, тем самым увеличен срок службы контактов прерывателя.

В отличие от контактной в бесконтактной системе зажигания (см. рис. 1.50) для управления накоплением энергии используется транзисторный коммутатор, взаимодействующий с бесконтактным датчиком импульсов. Транзисторный коммутатор в данной системе выполняет роль прерывателя. Распределение тока высокого напряжения осуществляется механическим распределителем. Применение бесконтактной системы зажигания позволяет повысить мощность двигателя, снизить расход топлива и выбросы вредных веществ за счет более высокого напряжения разряда (30000В) и соответственно более качественного сгорания топливно-воздушной смеси.

Рис. 1.50. Схема бесконтактой системы зажигания:

1 – свечи зажигания; 2 – датчик-распределитель; 3 – распределитель; 4 – датчик импульсов; 5 – коммутатор; 6 – катушка зажигания; 7 – монтажный блок 8 – реле зажигания; 9 – выключатель зажигания; А - к клемме генератора

В целом устройство бесконтактной системы зажигания аналогично контактной системе зажигания, за исключением датчика импульсов и транзисторного коммутатора.

Датчик импульсов предназначен для создания электрических импульсов низкого напряжения. Различают датчики импульсов следующих типов: Холла, индуктивный и оптический. Наибольшее применение в бесконтактной системе зажигания нашел датчик импульсов использующий эффект Холла (возникновение поперечного напряжения в пластине проводника с током под действием магнитного поля). Датчик Холла состоит из постоянного магнита, полупроводниковой пластины с микросхемой и стального экрана с прорезями (обтюратора). Прорезь в стальном экране пропускает магнитное поле и в полупроводниковой пластине возникает напряжение. Стальной экран не пропускает магнитное поле, и напряжение на полупроводниковой пластине не возникает. Чередование прорезей в стальном экране создает импульсы низкого напряжения.

Датчик импульсов конструктивно объединен с распределителем и образуют одно устройство – датчик-распределитель. Датчик-распределитель внешне подобен прерывателю-распределителю и имеет аналогичный привод от коленчатого вала двигателя.

Транзисторный коммутатор служит для прерывания тока в цепи первичной обмотки катушки зажигания в соответствии с сигналами датчика импульсов. Прерывание тока осуществляется за счет отпирания и запирания выходного транзистора.

Принцип работы бесконтактной системы зажигания заключается в следующем. При вращении коленчатого вала двигателя датчик-распределитель формирует импульсы напряжения и передает их на транзисторный коммутатор. Коммутатор создает импульсы тока в цепи первичной обмотки катушки зажигания. В момент прерывания тока индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания. Ток высокого напряжения подается на центральный контакт распределителя. В соответствии с порядком работы цилиндров двигателя ток высокого напряжения подается по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение топливно-воздушной смеси.

При увеличении оборотов коленчатого вала регулирование угла опережения зажигания осуществляется центробежным регулятором опережения зажигания. При изменении нагрузки на двигатель регулирование угла опережения зажигания производит вакуумный регулятор опережения зажигания.

В электронной системе зажигания используется электронный блок управления, с помощью которого производится управление процессом накопления и распределения электрической энергии. В ранних конструкциях электронной системы зажигания электронный блок одновременно управлял системой зажигания и системой впрыска топлива (т.н. объединенная система впрыска и зажигания). В настоящее время управление зажиганием включено в систему управления двигателем.

Существует множество конструкций электронных систем зажигания (Bosch Motronic, Simos, Magneti-Marelli и др.). Электронные системы зажигания можно разделить на два вида: системы зажигания с распределителем и системы прямого зажигания.

Первый вид электронных систем зажигания в своей работе использует механический распределитель, с помощью которого осуществляется подача тока высокого напряжения на конкретную свечу. В системах прямого зажигания подача тока высокого напряжения на свечу производится непосредственно с катушки зажигания.

Конструкция электронной системы зажигания включает традиционные элементы - источник питания, выключатель зажигания, катушку, свечи, а также провода высокого напряжения (на некоторых видах системы). Помимо этого система включает следующие элементы управления: входные датчики, электронный блок управления и исполнительное устройство - воспламенитель.

Входные датчики фиксируют текущие параметры работы двигателя и преобразуют их в электрические сигналы. Система электронного зажигания в своей работе использует датчики, входящие в состав системы управления двигателем: частоты вращения коленчатого вала двигателя, положения распределительного вала, массового расхода воздуха, детонации, температуры воздуха, температуры охлаждающей жидкости, давления воздуха, положения дроссельной заслонки, положения педали акселератора, давления топлива, кислородный датчик и другие. Номенклатура датчиков на разных моделях автомобилей может различаться.

Электронный блок управления двигателем обрабатывает сигналы входных датчиков и формирует управляющие воздействия на воспламенитель. Воспламенитель представляет собой электронную плату, обеспечивающую включение и выключение зажигания. Основу воспламенителя составляет транзистор. При открытом транзисторе ток протекает по первичной обмотке катушки зажигания, при закрытом – происходит его отсечка и наводка тока высокого напряжения во вторичной обмотке.

Электронная система зажигания может иметь одну общую катушку зажигания, индивидуальные катушки зажигания или сдвоенные катушки зажигания. Общая катушка зажигания применяется в электронной системе зажигания с распределителем. Индивидуальные катушки зажигания устанавливаются непосредственно на свечу, поэтому необходимость в высоковольтных проводах отпадает. В системах прямого зажигания также используются сдвоенные катушки зажигания. На четырехцилиндровом двигателе устанавливается две таких катушки: одна для 1 и 4 цилиндров, другая – для 2 и 3 цилиндров. Каждая из катушек создает ток высокого напряжения на двух выводах, поэтому искра зажигания всегда происходит одновременно в двух цилиндрах. В одном из цилиндров она воспламеняет топливно-воздушную смесь, в другом происходит вхолостую.

Принцип работы электронной системы зажигания заключается в следующем. В соответствии с сигналами датчиков электронный блок управления вычисляет оптимальные параметры работы системы. Осуществляется управляющее воздействие на воспламенитель, который обеспечивает подачу напряжения на катушку зажигания. В цепи первичной обмотки катушки зажигания начинает протекать ток. При прерывании напряжения, во вторичной обмотке катушки индуцируется ток высокого напряжения. По высоковольтным проводам или непосредственно с катушки зажигания ток высокого напряжения подается к соответствующей свече зажигания. Создающаяся искра в свече зажигания воспламеняет топливно-воздушную смесь.

При изменении скорости вращения коленчатого вала двигателя датчик частоты вращения коленчатого вала двигателя и датчик положения распределительного вала подают сигналы в электронный блок управления, который в свою очередь осуществляет необходимое изменение угла опережения зажигания.

При увеличении нагрузки на двигатель управление углом опережения зажигания осуществляется с помощью датчика массового расхода воздуха. Дополнительную информацию о процессе воспламенения и сгорания топливно-воздушной смеси дает датчик детонации. Другие датчики представляют дополнительную информацию о режимах работы двигателя.

 

Свеча зажигания (см. рис. 1.51) важный конструктивный элемент контактной, бесконтактной и электронной систем зажигания.

Рис. 1.51. Свеча зажигания:

1 – контактный стержень; 2 – изолятор; 3 – уплотнение; 4 – резистор; 5 – уплотнительная шайба; 6 – резьба; 7 – центральный электрод; 8 – корпус; 9 – боковой электрод

 

Свеча зажигания состоит из контактного стержня и центрального электрода, помещенных в изолятор. Контактный стержень обеспечивает соединение свечи зажигания с элементами системы зажигания – высоковольтным проводом или индивидуальной катушкой зажигания. Соединение может быть двух типов: фланцевое типа SAE или резьбовое М4. Наибольшее распространение получило соединение типа SAE.

Центральный электрод выполняет в свече зажигания, как правило, роль катода. Он изготавливается из легированной стали. Самый распространенный материал – хром-никелевый сплав. Диаметр центрального электрода определяется материалом, из которого он изготовлен, и может находится в пределе 0, 4-2, 5 мм. Центральный электрод, как правило, изготавливается из двух металлов (биметаллический электрод) – медного сердечника и стальной оболочки. Стальная оболочка центрального электрода быстро нагревается, обеспечивая при этом быстрый и надежный пуск двигателя и устойчивую работу на начальном этапе. Медный сердечник интенсивно отводит тепло во время работы.

Для увеличения срока службы свечи (повышения устойчивости к коррозии, электрохимическому разрушению) центральный электрод на современных свечах зажигания изготавливается из сплавов стали с редкоземельными и благородными металлами (платина, иридий, вольфрам, иттрий, палладий). В зависимости от наличия тех или иных металлов в центральном электроде свечи зажигания имеют названия - платиновая, иридиевая.

Применение прочных и тугоплавких сплавов в конструкции центрального электрода позволило значительно сократить толщину наконечника центрального электрода. Например, иридиевый наконечник имеет толщину 0, 4 мм, чем достигается значительное снижение напряжения искрообразования, повышение надежности воспламенения топливно-воздушной смеси.

Центральный электрод соединяется с контактным стержнем через резистор. Применение резистора обусловлено необходимостью защиты электронного оборудования двигателя от помех, возникающих при искрообразовании. Резистор представляет собой токопроводящую стекломассу, которой заливается промежуток между электродом и стержнем.

Контактный стержень и центральный электрод расположены в изоляторе, выполняющем функции электрической изоляции и обеспечения заданного температурного режима свечи зажигания. Изолятор изготовляется из тугоплавкой керамики. Различают наружную и внутреннюю (размещенную в камере сгорания) части изолятора. Для улучшения электрической изоляции и предотвращения утечки электроэнергии наружная часть изолятора выполняется ребристой.

Внутренняя часть изолятора (тепловой конус) определяет температурный (тепловой) режим свечи зажигания. Тепловой режим свечи зажигания характеризуется нижней и верхней границами. Нижняя граница начинается с температуры, при которой на тепловом конусе начинают сгорать скопившиеся частицы сажи, и называется температурой самоочищения. Величина температуры самоочищения составляет 450°С. Верхняя граница составляет 850°С. При данной температуре тепловой конус изолятора так сильно нагревается, что сам выступает источником воспламенения топливно-воздушной смеси. Такое неконтролируемое воспламенение смеси носит название калильное зажигание и может привести к детонации и серьезным поломкам двигателя.

Изменяя величину теплового конуса изолятора, производители свечей зажигания добиваются поддержания определенного температурного режима для разных бензиновых двигателей. Сильно выступающий тепловой конус и незначительная поверхность соприкосновения с корпусом характерны для т.н. «горячих» свечей зажигания. Такие свечи быстро нагреваются (большой конус) и медленно отводят тепло (малая поверхность соприкосновения с корпусом), поэтому их применение ограничено двигателями с низкой степенью сжатия и работающих на низкооктановом топливе.

«Холодные» свечи зажигания имеют короткий тепловой конус и значительную поверхность соприкосновения изолятора с корпусом. Они медленно нагреваются (малый конус) и быстро отводят тепло (большая поверхность соприкосновения с корпусом), поэтому применяются на двигателях с высокой степенью сжатия и работающих на высокооктановых топливах.

Металлический корпус служит для размещения всех элементов свечи зажигания, а также ввинчивание и удержания ее в головке блока цилиндров. Корпус изготавливается из никелевого сплава. Внутренней частью корпус соприкасается с изолятором. С наружи корпуса выполнена холоднокатаная метрическая резьба, с помощью которой свеча закрепляется в головке блока цилиндров. Уплотнение при завинчивании производится с помощью несъемной шайбы или конусного седла. Может применяться полая или гофрированная несъемная шайба. При завинчивании происходит раздавливание шайбы, чем достигается необходимое уплотнение.

Для завинчивания свечи зажигания в наружной части корпуса выполнен шестигранник под размер ключа. Затяжка свечи зажигания производиться с определенным усилием, рекомендованным производителем. Превышение усилия может привести к разрушению изолятора. Затяжка с недостаточным усилием приводит к нарушению герметичности камеры сгорания.

В нижней части корпуса приварен боковой электрод, который также изготавливается из никелевого сплава. В некоторых конструкциях свечей зажигания боковой электрод изготавливается из сплавов редкоземельных металлов. Для повышения срока службы свечи разработан ряд интересных конструктивных решений бокового электрода:

· использование нескольких электродов (от двух до четырех);

· V-образный вырез на конце;

· коническая форма;

· использование в качестве электрода торцевой поверхности корпуса.

Применение нескольких боковых электродов значительно увеличивает срок службы свечи зажигания. В работе такой свечи используется только один боковой электрод. Когда зазор между электродами вследствие электрохимического износа увеличивается, искра автоматически переходит на другой боковой электрод и т. д.

Между центральным и боковым электродами поддерживается определенное расстояние - зазор (искровой промежуток). Величина зазора должна быть оптимальна для конкретной свечи зажигания и соответственно конкретного двигателя. На размер искрового промежутка оказывают влияние ряд факторов: размер и форма центрального электрода, конструкция бокового электрода, плотность топливно-воздушной смеси.

Чем больше зазор, тем больше искра, лучше воспламенение топливно-воздушной смеси. Вместе с тем, при большом зазоре требуется большее пробивное напряжение, и соответственно велика вероятность пропусков зажигания, снижения топливной экономичности, увеличения вредных выбросов. При малом зазоре наблюдается малая искра и соответственно низкая эффективность воспламенения топливно-воздушной смеси.

Технические характеристики определяют область применения конкретной свечи зажигания на конкретном двигателе. К техническим характеристикам свечи зажигания относятся: диаметр резьбы, размер головки ключа, длина резьбы, зазор между электродами, а также калильное число.

Диаметр автомобильных свечей зажигания составляет, как правило, 14 мм. По длине резьбы свечи делятся: короткая – 12 мм, средняя – 19-20 мм, длинная – 25 и более мм. Чем мощнее двигатель, тем длина резьбы должна быть больше. Наиболее распространенный размер головки под ключ – 16 мм, реже – 18, 21 мм. Величина зазора между электродами у разных свечей зажигания находится в пределе 0, 5-2, 0 мм.

Тепловая характеристика свечи зажигания выражается калильным числом. Калильное число – это отвлеченная величина, при достижении которой появляется калильное зажигание. Шкала калильных чисел у разных производителей существенным образом различается. У некоторых производителей шкала калильных чисел увеличивается от «горячих» свеч к «холодным», например у Denso 9-35, NGK 2-11, 5. У Bosch, наоборот – увеличение от «холодных» к «горячим» (2-10). Свечи зажигания Champion шкалы как таковой не имеют.

Характеристики свечи зажигания отражаются в типовом обозначении - буквенно-цифровом коде, который может наноситься на свечу и обязательно отражается на упаковке. Типовые обозначения свечей различаются в зависимости от производителя, унифицированных обозначений нет. Для использования свечей зажигания разных производителей, существуют таблицы соответствия (взаимозаменяемости).

Система пуска двигателя

Система пуска двигателя обеспечивает вращение коленчатого вала двигателя со скоростью, при которой происходит его запуск.

На современных автомобилях наибольшее распространение получила стартерная система пуска. Система пуска двигателя входит в состав электрооборудования автомобиля. Питание системы осуществляется постоянным током от аккумуляторной батареи.

Система пуска включает стартер с тяговым реле и механизмом привода, замок зажигания и комплект соединительных проводов.

Стартер (см. рис. 1.52) создает необходимый крутящий момент для вращения коленчатого вала двигателя. Он представляет собой электродвигатель постоянного тока. Конструктивно стартер состоит из статора (корпуса), ротора (якоря), щеток со щеткодержателем, тягового реле и механизма привода.

Рис. 1.52. Схемы функционирования стартера

 

Тяговое реле обеспечивает питание обмоток стартера и работу механизма привода. Для выполнения своих функций тяговое реле имеет обмотку, якорь и контактную пластину. Внешнее подключение к тяговому реле осуществляется через контактные болты.

Механизм привода предназначен для механической передачи крутящего момента от стартера на коленчатый вал двигателя. Конструктивными элементами механизма являются: рычаг привода (вилка) с поводковой муфтой и демпферной пружиной, муфта свободного хода (обгонная муфта), ведущая шестерня. Передача крутящего момента осуществляется путем зацепления ведущей шестерни с зубчатым венцом маховика коленчатого вала.

Замок зажигания при включении обеспечивает подачу постоянного тока от аккумуляторной батареи к тяговому реле стартера.

Система пуска, устанавливаемая на бензиновые и дизельные двигатели, имеет аналогичную конструкцию. Для облегчения пуска дизельных двигателей в холодное время система может оборудоваться свечами накаливания, которые подогревают воздух во впускном коллекторе или камере сгорания. С этой же целью на автомобилях применяются системы предпускового подогрева.

Дальнейшим развитием системы пуска двигателя являются: автоматический запуск двигателя, интеллектуальный доступ в машину и запуск двигателя без ключа, система Стоп-Старт.

Работа системы пуска осуществляется следующим образом. При повороте ключа в замке зажигания ток от аккумуляторной батареи поступает на контакты тягового реле. При протекании тока по обмоткам тягового реле происходит втягивание якоря. Якорь тягового реле перемещает рычаг механизма привода и обеспечивает зацепление ведущей шестерни с зубчатым венцом маховика.

При движении якорь также замыкает контакты реле, при котором происходит питание током обмоток статора и якоря. Стартер начинает вращаться и раскручивает коленчатый вал двигателя. Как только происходит запуск двигателя, обороты коленчатого вала резко возрастают. Для предотвращения поломки стартера срабатывает обгонная муфта, которая отсоединяет стартер от двигателя. При этом стартер может продолжать вращаться.

При повороте ключа в замке зажигания стартер останавливается. Возвратная пружина тягового реле перемещает якорь, который в свою очередь возвращает механизм привода в исходное положение.


 

Лекция № 8

2. Идеальный цикл автомобильного двигателя.

План лекции

2.1. Термодинамические основы циклов ДВС

 

2.1. Термодинамические основы циклов ДВС

Циклом ДВС называют круговой термодинамический процесс, в котором теплота превращается в работу. Все термодинамические процессы действительного цикла, осуществляемого в реальном двигателе, в той или иной степени необратимы. Необратимость процессов связана с теплообменом, наличием трением в потоке газа. Необратимость процессов снижает эффективность преобразования теплоты в работу. При анализе эффективности циклов решают две задачи:

– определяют, от каких факторов зависит КПД обратимого термодинамического цикла и какими должны быть процессы цикла, чтобы его КПД имел наибольшее значение при заданных ограничениях;

– находят степень необратимости процессов действительного цикла и устанавливают, какие процессы целесообразно совершенствовать с целью уменьшения необратимых потерь и повышения КПД цикла.

Показателем термодинамической эффективности обратимого цикла цикла является его термический КПД:

(2.1)

где Lt – работа цикла (Lt = Qц); lt = Lt /G – работа цикла, отнесенная к 1 кг рабочего тела; ql = Q1/G – полученная от горячего источника теплота, отнесенная к 1 кг рабочего тела (Дж/кг); q2 = Q2/G – теплота, отданная холодному источнику, отнесенная к 1 кг рабочего тела (Дж/кг);

Другим важным показателем термодинамического цикла является его удельная работа, или среднее давление , т.е. работа цикла Lt отнесенная к рабочему объему , определяемому как разница полного объема цилиндра и камеры сжатия

(2.2)

Чем больше среднее давление, тем меньше при данной работе цикла объемы цилиндра, а, следовательно, меньше габаритные размеры и масса двигателя.

Анализ термодинамических циклов в ДВС проводится при следующих допущениях:

1. Рабочее тело – идеальный газ, масса которого во всех процессах остается постоянной.

2. Процессы сжатия и расширения происходят адиабатно (т.е. без теплообмена с внешней средой);

3. Теплоемкость рабочего тела не зависит от температуры;

4. Процессы сгорания и газообмена заменяются процессами подвода и отвода теплоты.

Обобщенный цикл

Применительно к поршневым ДВС рассмотрим общий случай осуществления термодинамического цикла (рис. 2.1) в координатах p-v и T-S. В обобщенный термодинамический цикл входят все основные процессы простых циклов поршневых двигателей.

Рис. 2.1. Обобщенный цикл поршневого ДВС

 

В этом цикле процессы сжатия (линия ас) и расширения (zb) происходит без теплообмена с внешней средой (dq = 0). При постоянном объеме подводится теплота, а при постоянном давлении - теплота . Отвод теплоты также смешанный: при постоянном объеме отводится , а при постоянном давлении теплота .

Количество подведенной теплоты в цикле, когда работу совершает 1кг рабочего тела

(2.3)

где - удельные массовые теплоемкости, соответственно при постоянных V и р;

- температуры цикла соответственно в точках

Абсолютное количество теплоты, отведенной в цикле:

(2.4)

Используя уравнение термического КПД (2.1) можно записать:

Введем следующие обозначения:

- степень сжатия;

- степень повышения давления при подводе теплоты, когда V= const;

- степень предварительного расширения при подводе теплоты, когда р = const;

- степень последующего расширения;

– степень уменьшения объема при отводе теплоты;

– степень снижения давления при отводе теплоты.

При этом три параметра связаны между собой .

Температуры в характерных точках цикла можно выразить через начальную температуру Ta, параметры цикла и показатель адиабаты По известным из термодинамики уравнениям, характеризующим отдельные процессы, запишем выражение для обобщенного цикла

(2.5)

Из формулы (2.5) видно, что термодинамический КПД цикла зависит от способа подвода теплоты, определяемого значениями параметров λ и ρ, от способа отвода теплоты, определяемого значениями параметров и , от показателя адиабаты k, т.е. от физических свойств рабочего тела и степени сжатия ε. При этом повышение ε при одних и тех же условиях подвода и отвода теплоты ведёт к увеличению η t.


Поделиться:



Популярное:

  1. I. Специфика отношений “принципал – агент” применительно к государству.
  2. XXIII. ПСИХИЧЕСКАЯ ЭНЕРГИЯ И ВЫСШИЙ ПРИНЦИП ЭВОЛЮЦИИ
  3. Алкмеон. Принцип нервизма. Нейропсихизм. Принцип подобия
  4. Анатомо-функциональная характеристика пищевода. Дивертикулы пищевода. Классификация, клиника, диагностика, лечение.
  5. Антропный космологический принцип
  6. Антропологический принцип философии Л.Фейербаха.
  7. Ассортимент и принципы сочетания соусов с разными блюдами
  8. Аудиторская выборка: основные принципы и порядок построения
  9. Б11.5 Цели, принципы и методы в оценки машин и оборудования. Области применения и ограничения методов оценки машин и оборудования
  10. БИЛЕТ 30. Гипотеза ле Бройля. Опыты Дэвиссона и Джермера. Дифракция микрочастиц. Принцип неопределенности Гейзенберга
  11. БИОГЕНЕТИЧЕСКИЙ ПРИНЦИП И ЕГО ЗНАЧЕНИЕ В ПЕДАГОГИКЕ (Хрестоматия по возрастной и педагогической психологии / Под ред. И.И. Ильясова, В.Я. Ляудис. – М., 1981.)
  12. Буферные системы крови, их характеристики и принцип действия.


Последнее изменение этой страницы: 2016-06-05; Просмотров: 888; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.064 с.)
Главная | Случайная страница | Обратная связь