|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Уравнение Бернулли для идеальной жидкости
Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P, средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач. Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).
Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2. Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q. Для измерения давления жидкости применяют пьезометры тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:
и прочитать так: сумма трех членов уравнения Бернулли для любого сечения потока идеальной жидкости есть величина постоянная. С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии: z1 и z2 - удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2;
Масса жидкости занимает некоторый объем V, находящийся под давлением р. Потенциальная энергия давления равна рV. Удельная же потенциальная энергия давления равна потенциальной энергии pV, деленной на силу тяжести данного объема gV, т.е.
Полный запас удельной потенциальной энергии массы жидкости равен их сумме, т. е.
Кроме того, масса жидкости движется со скоростью U и обладает кинетической энергией
Складывая выражения (в) и (г), получим выражение полной удельной энергии элементарной струйки
(д) . Уравнение Д. Бернулли для элементарной струйки. Выделим в установившемся потоке реальной жидкости элементарную струйку и определим удельную энергию жидкости в двух произвольных сечениях 1-1 и 2-2. Высоты положения центров первого и второго сечений будут соответственно z1 и z2; гидродинамическое давление и этих же точках р1 и р2 скорости течения – u1 и u2. Тогда полная удельная энергия элементарной струйки в сечении 1-1 на основании формулы (71) равна
а в сечении 2-2
Практически всегда
Уравнение (73) и есть уравнение Д. Бернулли для элементарной струйки реальной жидкости при установившемся движении, которое устанавливает связь между скоростью движения, давлением в жидкости и положением точки в пространстве. Оно справедливо для любых двух сечений, так как сечения 1-1 и 2-2 были взяты произвольно
Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 882; Нарушение авторского права страницы