Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Гидростатическое давление и его свойства. Единицы измерения.



Общие понятия кинематики и динамики жидкости.Линии тока и траектории частиц жидкости.Расход и средняя скорость.

Гидродинамика - раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями. Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул. Основные понятия о движении жидкости

Живым сечением ω (м² ) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы - круг (рис.3.1, б); живое сечение клапана - кольцо с изменяющимся внутренним диаметром (рис.3.1, б).

 

 

Рис. 3.1. Живые сечения: а - трубы, б - клапана

Смоченный периметр χ (" хи" ) - часть периметра живого сечения, ограниченное твердыми стенками (рис.3.2, выделен утолщенной линией).

 

 

Рис. 3.2. Смоченный периметр

 

Для круглой трубы

если угол в радианах, или

Расход потока Q - объем жидкости V, протекающей за единицу времени t через живое сечение ω.

Средняя скорость потока υ - скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω

Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

Гидравлический радиус потока R - отношение живого сечения к смоченному периметру

Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени

υ = f(x, y, z).P = φ f(x, y, z)

Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным

υ = f1(x, y, z, t).P = φ f1(x, y, z, t)

Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

Трубка тока - трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой.

Рис. 3.3. Линия тока и струйка

Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное - течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.

Рис. 3.4. Труба с переменным диаметром при постоянном расходе

Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением (рис.3.4). Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q1=Q2= const, откуда

ω 1υ 1 = ω 2υ 2

Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:

 

Графики Никурадзе.

Впервые наиболее исчерпывающей работы по определению были даны И.И. Никурадзе, который на основе опытных данных построил график зависимости lg(1000λ ) от lg Re для ряда значений Δ /r 0. Опыты Никурадзе были проведены на трубах с искусственно заданной шероховатостью, полученной путем приклейки песчинок определенного размера на внутренние стенки трубопровода. Результаты этих исследований представлены на рис. 4.7, где построены кривые зависимости lg (1000λ ) от lg Re для ряда значений Δ /r0. Прямая I соответствует ламинарному режиму движения жидкости. Далее на графике можно рассматривать три области. Первая область - область малых Re и Δ /r0, где коэффициент λ не зависит от шероховатости, а определяется лишь числом Re (отмечена на рис.4.7 прямой II ). Это область гидравлически гладких труб. Если число Рейнольдса лежит в диапазоне 4000 < Re < 10(d / Δ э) коэффициент λ определяется по полуэмпирической формуле Блазиуса. Для определения существует также эмпирическая формула П.К. Конакова, которая применима для гидравлически гладких труб

Рис. 4.7. График Никурадзе

Во второй области, расположенной между линий II и пунктирной линией справа, коэффициент λ зависит одновременно от двух параметров - числа Re и относительной шероховатости Δ /r0, которую можно заменить на Δ э. Для определения коэффициента λ в этой области может служить универсальная формула А.Д. Альтшуля:

 

где Δ э - эквивалентная абсолютная шероховатость.

Характерные значения Δ э (в мм) для труб из различных материалов приведены ниже: Стекло 0

Трубы, тянутые из латуни, свинца, меди 0…0, 002

Высококачественные бесшовные стальные трубы 0, 06…0, 2

Стальные трубы 0, 1…0, 5

Чугунные асфальтированные трубы 0, 1…0, 2

Чугунные трубы 0, 2…1, 0

Третья область - область больших Re и Δ /r0, где коэффициент λ не зависит от числа Re, а определяется лишь относительной шероховатостью (область расположена справа от пунктирной линии). Это область шероховатых труб, в которой все линии с различными шероховатостями параллельны между собой. Эту область называют областью автомодельности или режимом квадратичного сопротивления, т.к. здесь гидравлические потери пропорциональны квадрату скорости.

Определение λ для этой области производят по упрощенной формуле Альтшуля:

или по формуле Прандтля - Никурадзе:

Графики Нмкурадзе

И. И. Никурадзе испытал на сопротивление ряд труб с искусст­венно созданной шероховатостью на их внутренней поверхности. Шероховатость была получена путем приклейки песчинок определен­ного размера, полученного просеиванием песка через специальные сита. Тем самым была получена равномерно распределенная зерни­стая шероховатость.

Первая область — область малых Rе и 0, где коэффициент т от шероховатости не зависит, а определяется лишь числом Rе; это область гидравлически гладких труб. Она не имеет места для макси­мальных значений шероховатости в опытах И. И. Никурадзе.

Во второй области коэффициент т зависит одновременно от двух параметров — числа Rе и относительной шероховатости.

Третья область — область больших Rе и 0, где коэффици­ент т не зависит от Rе, а определяется лишь относительной шерохо­ватостью. Эту область называют областью автомоделыюсти или режимом квадратичного сопротивления, так как независимость коэф­фициента т от Ве означает, что потеря напора пропорциональна скорости во второй степени

Чтобы лучше уяснить эти особенности сопротивления шерохова­тых труб, необходимо учесть наличие ламинарного слоя

Как указывалось выше, при увеличении Ве толщина ламинар­ного слоя л уменьшается, поэтому для турбулентного потока при малых Rе толщина ламинарного слоя больше высоты бугорков шеро­ховатости, последние находятся внутри ламинарного слоя, обтекаются плавно (безотрывно) и на сопротивление не влияют. По мере увели­чения Rе толщина л уменьшается, бугорки шероховатости начи­нают выступать за пределы слоя и влиять на сопротивление. При больших Rе толщина ламинарного слоя становится весьма малой, а бугорки шероховатости обтекаются турбулентным потоком с вихре-образованиями за каждым бугорком; этим и объясняется квадратич­ный закон сопротивления, характерный для данной области.

График И. И. Никурадзе позволяет построить примерную зависи­мость от Ве допустимой шероховатости, т. е. такого максимального значения, при котором шероховатость трубы еще не влияет на ее сопротивление. Для этого следует взять те точки на графике (см. рис.), в которых кривые для шероховатых труб начинают откло­няться от прямой В для гладких труб. Очевидно, что с увеличением Rе значение допустимой шероховатости уменьшается.

 

 

Гидростатическое давление и его свойства. Единицы измерения.

В покоящейся жидкости всегда присутствует сила давления, которая называется гидростатическим давлением. Жидкость оказывает силовое воздействие на дно и стенки сосуда. Частицы жидкости, расположенные в верхних слоях водоема, испытывают меньшие силы сжатия, чем частицы жидкости, находящиеся у дна.

Рассмотрим резервуар с плоскими вертикальными стенками, наполненный жидкостью (рис.2.1, а). На дно резервуара действует сила P равная весу налитой жидкости G = γ V, т.е. P = G. Если эту силу P разделить на площадь дна Sabcd, то мы получим среднее гидростатическое давление, действующее на дно резервуара.

Гидростатическое давление обладает свойствами.

Свойство 1. В любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости. Для доказательства этого утверждения вернемся к рис.2.1, а. Выделим на боковой стенке резервуара площадку Sбок (заштриховано). Гидростатическое давление действует на эту площадку в виде распределенной силы, которую можно заменить одной равнодействующей, которую обозначим P. Предположим, что равнодействующая гидростатического давления P, действующая на эту площадку, приложена в точке А и направлена к ней под углом φ (на рис. 2.1 обозначена штриховым отрезком со стрелкой). Тогда сила реакции стенки R на жидкость будет иметь ту же самую величину, но противоположное направление (сплошной отрезок со стрелкой). Указанный вектор R можно разложить на два составляющих вектора: нормальный Rn (перпендикулярный к заштрихованной площадке) и касательный Rτ к стенке. Сила нормального давления Rn вызывает в жидкости напряжения сжатия. Этим напряжениям жидкость легко противостоит. Сила Rτ действующая на жидкость вдоль стенки, должна была бы вызвать в жидкости касательные напряжения вдоль стенки и частицы должны были бы перемещаться вниз. Но так как жидкость в резервуаре находится в состоянии покоя, то составляющая Rτ отсутствует. Отсюда можно сделать вывод первого свойства гидростатического давления.

 

 

Рис. 2.1. Схема, иллюстрирующая свойства гидростатического давления а - первое свойство; б - второе свойство

Свойство 2. Гидростатическое давление неизменно во всех направлениях.

В жидкости, заполняющей какой-то резервуар, выделим элементарный кубик с очень малыми сторонами Δ x, Δ y, Δ z (рис.2.1, б). На каждую из боковых поверхностей будет давить сила гидростатического давления, равная произведению соответствующего давления Px, Py, Pz на элементарные площади. Обозначим вектора давлений, действующие в положительном направлении (согласно указанным координатам) как P'x, P'y, P'z, а вектора давлений, действующие в обратном направлении соответственно P''x, P''y, P''z. Поскольку кубик находится в равновесии, то можно записать равенства

P'xΔ yΔ z=P''xΔ yΔ z

P'yΔ xΔ z = P''yΔ xΔ z

P'zΔ xΔ y + γ Δ x, Δ y, Δ z = P''zΔ xΔ y

где γ - удельный вес жидкости;

Δ x, Δ y, Δ z - объем кубика.

Сократив полученные равенства, найдем, что

P'x = P''x; P'y = P''y; P'z + γ Δ z = P''z

Членом третьего уравнения γ Δ z, как бесконечно малым по сравнению с P'z и P''z, можно пренебречь и тогда окончательно

P'x = P''x; P'y = P''y; P'z=P''z

Вследствие того, что кубик не деформируется (не вытягивается вдоль одной из осей), надо полагать, что давления по различным осям одинаковы, т.е.

P'x = P''x = P'y = P''y = P'z=P''z

Это доказывает второй свойство гидростатического давления.

Свойство 3. Гидростатическое давление в точке зависит от ее координат в пространстве.

Это положение не требует специального доказательства, так как ясно, что по мере увеличения погружения точки давление в ней будет возрастать, а по мере уменьшения погружения уменьшаться. Третье свойство гидростатического давления может быть записано в виде

P=f(x, y, z)

3.абсолютное, вакуумметрическое, избточное, атмосферное давление.

Если давление Р отсчитывают от абсолютного нуля, то его называют абсолютным давлением Рабс. Если давление отсчитывают от атмосферного, то оно называется избыточным Ризб. Атмосферное давление постоянно Ра = 103 кПа (рис.1.5).

За единицу давления в Международной системе единиц (СИ) принят паскаль - давление вызываемое силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 м²:

1 Па = 1 Н/м² = 10-3 кПа = 10-6 МПа.

Размерность давления обозначается как " Па" (паскаль), " кПа" (килопаскаль), " МПа" (мегапаскаль). В технике в настоящее время продолжают применять систему единиц МКГСС, в которой за единицу давления принимается 1 кгс/м².

1 Па = 0, 102 кгс/м² или 1 кгс/м² = 9, 81 Па.

 

4. Теорема о давлении в точк е

Основное уравнение гидростатики.Рассмотрим распространенный случай равновесия жидкости, когда на нее действует только одна массовая сила - сила тяжести, и получим уравнение, позволяющее находить гидростатическое давление в любой точке рассматриваемого объема жидкости. Это уравнение называется основным уравнением гидростатики. Пусть жидкость содержится в сосуде (рис.2.2) и на ее свободную поверхность действует давление P0. Найдем гидростатическое давление P в произвольно взятой точке М, расположенной на глубине h. Выделим около точки М элементарную горизонтальную площадку dS и построим на ней вертикальный цилиндрический объем жидкости высотой h. Рассмотрим условие равновесия указанного объема жидкости, выделенного из общей массы жидкости. Давление жидкости на нижнее основание цилиндра теперь будет внешним и направлено по нормали внутрь объема, т.е. вверх.

Запишем сумму сил, действующих на рассматриваемый объем в проекции на вертикальную ось:

PdS - P0 dS - ρ ghdS = 0

Последний член уравнения представляет собой вес жидкости, заключенный в рассматриваемом вертикальном цилиндре объемом hdS. Силы давления по боковой поверхности цилиндра в уравнение не входят, т.к. они перпендикулярны к этой поверхности и их проекции на вертикальную ось равны нулю. Сократив выражение на dS и перегруппировав члены, найдем

P = P0 + ρ gh = P0 + hγ

Полученное уравнение называют основным уравнением гидростатики. По нему можно посчитать давление в любой точке покоящейся жидкости. Это давление, как видно из уравнения, складывается из двух величин: давления P0 на внешней поверхности жидкости и давления, обусловленного весом вышележащих слоев жидкости.

Из основного уравнения гидростатики видно, что какую бы точку в объеме всего сосуда мы не взяли, на нее всегда будет действовать давление, приложенное к внешней поверхности P0. Другими словами давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково. Это положение известно под названием закона Паскаля. Поверхность, во всех точках которой давление одинаково, называется поверхностью уровня (подробно рассмотрим в п.2.6). В обычных условиях поверхности уровня представляют собой горизонтальные плоскости.

 

 

9.Относительный покой жидкости во вращающемся сосуде.

В качестве примера рассмотрим часто встречающийся практике случай относительного покоя жидкости во вращающихся сосудах (например, в сепараторах и центрифугах, применяемых для разделения жидкостей). В этом случае (рис.2.7) на любую частицу жидкости при ее относительном равновесии действуют массовые силы: сила тяжести G = mg и центробежная сила Pu = mω 2r, где r - расстояние частицы от оси вращения, а ω - угловая скорость вращения сосуда.

Поверхность жидкости также должна быть нормальна в каждой точке к равнодействующей этих сил R и представит собой параболоид вращения. Из чертежа находим С другой стороны: где z - координата рассматриваемой точки. Таким образом, получаем: откуда или после интегрирования В точке пересечения кривой АОВ с осью вращения r = 0, z = h = C, поэтому окончательно будем иметь т.е. кривая АОВ является параболой, а свободная поверхность жидкости параболоидом. Такую же форму имеют и другие поверхности уровня. Для определения закона изменения давления во вращающейся жидкости в функции радиуса и высоты выделим вертикальный цилиндрический объем жидкости с основанием в виде элементарной горизонтальной площадки dS (точка М) на произвольном радиусе r и высоте z и запишем условие его равновесия в вертикальном направлении. С учетом уравнения (2.11) будем иметь После сокращений получим Это значит, что давление возрастает пропорционально радиусу r и уменьшается пропорционально высоте z.

~10.Давление жидкости на плоскую наклонную стенку

Пусть мы имеем резервуар с наклонной правой стенкой, заполненный жидкостью с удельным весом γ. Ширина стенки в направлении, перпендикулярном плоскости чертежа (от читателя), равна b (рис.2.3). Стенка условно показана развернутой относительно оси АВ и заштрихована на рисунке. Построим график изменения избыточного гидростатического давления на стенку АВ.

Так как избыточное гидростатическое давление изменяется по линейному закон P=γ gh, то для построения графика, называемого эпюрой давления, достаточно найти давление в двух точках, например А и B.

Избыточное гидростатическое давление в точке А будет равно

PA = γ h = γ ·0 = 0Соответственно давление в точке В: PB = γ h = γ Hгде H - глубина жидкости в резервуаре. Согласно первому свойству гидростатического давления, оно всегда направлено по нормали к ограждающей поверхности. Следовательно, гидростатическое давление в точке В, величина которого равна γ H, надо направлять перпендикулярно к стенке АВ. Соединив точку А с концом отрезка γ H, получим треугольную эпюру распределения давления АВС с прямым углом в точке В. Среднее значение давления будет равно Если площадь наклонной стенки S=bL, то равнодействующая гидростатического давления равна Однако точка приложения равнодействующей гидростатического давления ц.д. не всегда будет совпадать с центром тяжести плоской поверхности. Эта точка находится на расстоянии l от центра тяжести и равна отношению момента инерции площадки относительно центральной оси к статическому моменту этой же площадки. где JАx - момент инерции площади S относительно центральной оси, параллельной Аx. В частном случае, когда стенка имеет форму прямоугольника размерами bL и одна из его сторон лежит на свободной поверхности с атмосферным давлением, центр давления ц.д. находится на расстоянии b/3 от нижней стороны.

11.Центр давления. см. вопрос10 и 12.

 

~12Давление жидкости на цилиндрическую поверхность

Пусть жидкость заполняет резервуар, правая стенка которого представляет собой цилиндрическую криволинейную поверхность АВС (рис.2.4), простирающуюся в направлении читателя на ширину b. Восстановим из точки А перпендикуляр АО к свободной поверхности жидкости. Объем жидкости в отсеке АОСВ находится в равновесии. Это значит, что силы, действующие на поверхности выделенного объема V, и силы веса взаимно уравновешиваются.

Представим, что выделенный объем V представляет собой твердое тело того же удельного веса, что и жидкость (этот объем на рис.2.4 заштрихован). Левая поверхность этого объема (на чертеже вертикальная стенка АО) имеет площадь Sx = bH, являющуюся проекцией криволинейной поверхности АВС на плоскость yOz.

Cила гидростатического давления на площадь Sx равна Fx = γ Sxhc.

С правой стороны на отсек будет действовать реакция R цилиндрической поверхности. Пусть точка приложения и направление этой реакции будут таковы, как показано на рис.2.4. Реакцию R разложим на две составляющие Rx и Rz.

Из действующих поверхностных сил осталось учесть только давление на свободной поверхности Р0. Если резервуар открыт, то естественно, что давление Р0 одинаково со всех сторон и поэтому взаимно уравновешивается.

На отсек АВСО будет действовать сила собственного веса G = γ V, направленная вниз.

Спроецируем все силы на ось Ох: Fx - Rx = 0 откуда Fx = Rx = γ Sxhc Теперь спроецируем все силы на ось Оz: Rx - G = 0 откуда Rx = G = γ V.Составляющая силы гидростатического давления по оси Oy обращается в нуль, значит Ry = Fy = 0. Таким образом, реакция цилиндрической поверхности в общем случае равна

а поскольку реакция цилиндрической поверхности равна равнодействующей гидростатического давления R=F, то делаем вывод, что

 

 

13.Закон Архимеда и его приложение

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела. Pвыт = ρ жgVпогр

Для однородного тела плавающего на поверхности справедливо соотношение

, ρ m - плотность тела.

Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь гидравлической сущности этой теории.

Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называется устойчивостью. Вес жидкости, взятой в объеме погруженной части судна называют водоизмещением, а точку приложения равнодействующей давления (т.е. центр давления) - центром водоизмещения. При нормальном положении судна центр тяжести С и центр водоизмещения d лежат на одной вертикальной прямой O'-O", представляющей ось симметрии судна и называемой осью плавания (рис.2.5).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K'L'M', наоборот, погрузилось в нее. При этом получили новое положении центра водоизмещения d'. Приложим к точке d' подъемную силу R и линию ее действия продолжим до пересечения с осью симметрии O'-O". Полученная точка m называется метацентром, а отрезок mC = h называется метацентрической высотой. Будем считать h положительным, если точка m лежит выше точки C, и отрицательным – в противном случае.

Рис. 2.5. Поперечный профиль судна

Теперь рассмотрим условия равновесия судна:

1) если h > 0, то судно возвращается в первоначальное положение;

2) если h = 0, то это случай безразличного равновесия;

3) если h& lt0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее опрокидывание судна.

Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше будет остойчивость судна.

 


Поделиться:



Популярное:

  1. A. Оценка будущей стоимости денежного потока с позиции текущего момента времени
  2. A. Смещение суставной головки через вершину суставного бугорка на передний его скат
  3. A.27. Процедура ручной регулировки зеркала заднего вида
  4. B. С нарушением непрерывности только переднего полукольца
  5. Cсрочный трудовой договор и сфера его действия.
  6. F. Оценка будущей стоимости денежного потока с позиции текущего момента времени
  7. G) определение путей эффективного вложения капитала, оценка степени рационального его использования
  8. H) Такая фаза круговорота, где устанавливаются количественные соотношения, прежде всего при производстве разных благ в соответствии с видами человеческих потребностей.
  9. I. МИРОВОЗЗРЕНИЕ И ЕГО ИСТОРИЧЕСКИЕ ТИПЫ
  10. I. ПОЛОЖЕНИЯ И НОРМЫ ДЕЙСТВУЮЩЕГО ЗАКОНОДАТЕЛЬСТВА, В ОБЛАСТИ ОРГАНИЗАЦИИ ПРОТИВОПОЖАРНОЙ ПРОПАГАНДЫ И ОБУЧЕНИЯ НАСЕЛЕНИЯ МЕРАМ ПОЖАРНОЙ БЕЗОПАСНОСТИ
  11. I. Рабочее тело и параметры его состояния. Основные законы идеального газа.
  12. III ПУТЬ ПРЯМОГО ВНУТРЕННЕГО ОПЫТА


Последнее изменение этой страницы: 2016-06-05; Просмотров: 3324; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.049 с.)
Главная | Случайная страница | Обратная связь