Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Потери напора при турбулентном течении жидкости
Как было указано в п.4.1, для турбулентного течения характерно перемешивание жидкости, пульсации скоростей и давлений. Если с помощью особо чувствительного прибора-самописца измерять пульсации, например, скорости по времени в фиксированной точке потока, то получим картину, подобную показанной на рисунок 4.4. Скорость беспорядочно колеблется около некоторого осредненного по времени значения υ оср, которое данном случае остается постоянным. Характер линий тока в трубе в данный момент времени отличается большим разнообразием (рисунок 4.5). Рисунок 4.4 – Пульсация скорости в турбулентном потоке Рисунок 4.5 – Характер линий тока в турбулентном потоке При турбулентном режиме движения жидкости в трубах эпюра распределения скоростей имеет вид, показанный на рисунок 4.6. В тонком пристенном слое толщиной δ жидкость течет в ламинарном режиме, а остальные слои текут в турбулентном режиме, и называются турбулентным ядром. Таким образом, строго говоря, турбулентного движения в чистом виде не существует. Оно сопровождается ламинарным движением у стенок, хотя слой δ с ламинарным режимом весьма мал по сравнению с турбулентным ядром.
Рисунок 4.6 – Модель турбулентного режима движения жидкости Основной расчетной формулой для потерь напора при турбулентном течении жидкости в круглых трубах является уже приводившаяся выше эмпирическая формула, называемая формулой Вейсбаха-Дарси и имеющая следующий вид: Различие заключается лишь в значениях коэффициента гидравлического трения λ. Этот коэффициент зависит от числа Рейнольдса Re и от безразмерного геометрического фактора - относительной шероховатости Δ /d (или Δ /r0, где r0 - радиус трубы). Впервые наиболее исчерпывающей работы по определению были даны И.И. Никурадзе, который на основе опытных данных построил график зависимости lg(1000λ ) от lg Re для ряда значений Δ /r 0. Опыты Никурадзе были проведены на трубах с искусственно заданной шероховатостью, полученной путем приклейки песчинок определенного размера на внутренние стенки трубопровода. Результаты этих исследований представлены на рисунок 4.7, где построены кривые зависимости lg (1000λ ) от lg Re для ряда значений Δ /r0. Прямая I соответствует ламинарному режиму движения жидкости. Далее на графике можно рассматривать три области. Первая область - область малых Re и Δ /r0, где коэффициент λ не зависит от шероховатости, а определяется лишь числом Re (отмечена на рисунок 4.7 прямой II ). Это область гидравлически гладких труб. Если число Рейнольдса лежит в диапазоне 4000 < Re < 10(d / Δ э) коэффициент λ определяется по полуэмпирической формуле Блазиуса (4.10) Для определения существует также эмпирическая формула П.К. Конакова, которая применима для гидравлически гладких труб (4.11) Рисунок 4.7 – График Никурадзе Во второй области, расположенной между линий II и пунктирной линией справа, коэффициент λ зависит одновременно от двух параметров - числа Re и относительной шероховатости Δ /r0, которую можно заменить на Δ э. Для определения коэффициента λ в этой области может служить универсальная формула А.Д. Альтшуля: (4.12) где Δ э - эквивалентная абсолютная шероховатость. Характерные значения Δ э (в мм) для труб из различных материалов приведены ниже:
Третья область - область больших Re и Δ /r0, где коэффициент λ не зависит от числа Re, а определяется лишь относительной шероховатостью (область расположена справа от пунктирной линии). Это область шероховатых труб, в которой все линии с различными шероховатостями параллельны между собой. Эту область называют областью автомодельности или режимом квадратичного сопротивления, т.к. здесь гидравлические потери пропорциональны квадрату скорости. Определение λ для этой области производят по упрощенной формуле Альтшуля: или по формуле Прандтля - Никурадзе: Итак, потери напора, определяемые по формуле Вейсбаха-Дарси, можно определить, зная коэффициент гидравлического сопротивления, который определяется в зависимости от числа Рейнольдса Re и от эквивалентной абсолютной шероховатости Δ э. Для удобства сводные данные по определению λ представлены в таблице 4.1. Пользоваться приведенными в таблице 4.1 формулами для определения коэффициента λ не всегда удобно. Для облегчения расчетов можно воспользоваться номограммой Колбрука-Уайта (рисунок 4.8), при помощи которой по известным Re и Δ э/ d весьма просто определяется λ. Таблица 4.1 – Таблица для определения коэффициента гидравлического трения
Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 592; Нарушение авторского права страницы