Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Легкие и особо легкие бетоны



В современном строительстве наибольшее значение приобрело комплексное решение двух взаимосвязанных проблем: повышение теплозащитных свойств ограждающих конструкций и уменьшение материалоемкости строительства. Одним из путей решения этих проблем может быть применение для изготовления конструкций легких и особо легких бетонов. К этим бетонам относятся бетоны на пористых заполнителях, в том числе поризованные и крупнопористые, бетоны на легких органических заполнителях и ячеистые бетоны. Легкие и особо легкие бетоны используют для снижения массы несущих конструкций и в ограждающих конструкциях, поэтому для них наряду с прочностью очень важна плотность, которая характеризуется соответствующими марками.

Бетоны на пористых заполнителях. Дляих изготовления в качестве крупного заполнителя применяют легкие заполнители с пористой структурой – природные (пемза, вулканические туфы) и искусственные (керамзит, аглопорит, вспученные перлит и вермикулит).

Керамзит (керамзитовый гравий) получают путем обжига гра­нул, приготовленных из вспучивающихся глин. Это лег­кий и прочный заполнитель насыпной плотностью 250-800 кг/м3. В процессе об­жига (до 1200°С) легкоплавкая глина переходит в пиропластическое состояние и вспучивается вследствие выде­ления внутри каждой гранулы газообразных продуктов. В изломе гранула керамзита имеет структуру застывшей пены. Спекшаяся оболочка, покрывающая гранулу, придает ей высокую прочность.

Керамзитовый песок (зерна до 5 мм) получают при производстве керамзитового гравия (в небольших коли­чествах), а также по методу кипящего слоя обжигом гли­няных гранул во взвешенном состоянии. Кроме того, его можно получать дроблением зерен гравия размером бо­лее 50 мм и сваров.

Шлаковую пемзу изготовляют путем быстрого охлаж­дения расплава металлургических (обычно доменных) шлаков, приводящего к вспучиванию. Куски шлаковой пемзы дробят и рассеивают, получая пористый щебень. Производство шлаковой пемзы налажено в районах раз­витой металлургии. Здесь себестоимость шлаковой пем­зы ниже, чем керамзита.

Вспученный перлит изготовляют путем обжига водосодержащих вулканических стеклообразных пород (перлитов, обсидианов). При 950- 1200°С вода выделяется и перлит увеличивается в объеме в 10-20 раз.

Вспученный вермикулит– пористый сыпучий мате­риал, полученный путем термической обработки водосодержащих слюд. Этот заполнитель, как и вспученный перлит, используют для из­готовления теплоизоляционных легких бетонов.

Аглопорит получают при обжиге глиносодержащего сырья с добавкой 8-10 % твердого топлива (на решет­ках агломерационных машин). Каменный уголь выгорает, а частицы сырья спекаются.

По насыпной плотности в сухом состоянии (кг/м3) по­ристые заполнители разделяют на марки: 100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1100 и 1200.

Наивыгоднейшее сочетание показателей плотности, теплопроводности, прочности и расхода цемента для лег­ких бетонов достигается при наибольшем насыщении бе­тона пористым заполнителем, что требует сбли­женного размещения зерен заполнителя в объеме бе­тона. В этом случае в бетоне будет содержаться меньше цементного камня, являющегося самой тяжелой частью легкого бетона. Наибольшее насыщение бетона пористым заполнителем возможно только при правильном подборе его зернового состава с одновременным использованием технологических факторов (интенсивного уплотнения, пластифика­торов). Рекомендации по рациональному зерновому составусодержатся в стандартах на каждый вид пористого заполнителя.

Прочность легких пористых заполнителей невелика, обычно ниже прочности цементного раствора. Однако хорошее сцепление между ним и зернами пористого заполнителя (эффект «цементной обоймы») обеспечивает высокую прочность бетона в целом.

Пористые заполнители обладают значительным водопоглощением и при затворении бетонной смеси отсасывают часть воды. Поэтому по сравнению с тяжелым бетоном равноподвижные легкобетонные смеси требуют увеличения расхода воды. При этом в легком бетоне отчетливо проявляется вредное влияние как недостатка, так и избытка воды. Благодаря тому, что часть воды затворения аккумулируется пористым заполнителем, а затем отдается цементу по мере твердения бетона, твердение легкого бетона меньше зависит от влажностных условий, а усадочные деформации в цементном камне имеют меньшую величину. В результате легкий бетон на пористых заполнителях обладает высокой однородностью структуры и малой проницаемостью, что обеспечивает высокую прочность (10 – 40 МПа и выше) и долговечность конструкций и сооружений.

В качестве мелкого заполнителя используют обычно природный песок. Искусственные пористые пески, несмотря на значительно лучшие результаты, вследствие дефицитности и дороговизны применяют редко.

Основным показателем прочности легкого бетона яв­ляется класс бетона по прочности при сжатии; установ­лены следующие классы, МПа: В 2; В 2, 5; В 3, 5; В 5; В 7, 5; В 10; В 12, 5; В 15; В 17, 5; В 20; В 22, 5; В 25; В 30; В 40; для теплоизоляционных бетонов предусмотрены, кроме того, классы: В 0, 35; В 0, 75; В 1.

Прочность легкого бетона R, по Н. А. Попову, зави­сит от марки цемента, цементно-водного отношения, прочности пористого заполнителя и может быть прибли­женно определена по формуле, имеющей в определен­ных границах Ц/В такой же вид, как и для тяжелых бе­тонов:

,

где А2 и в2– безразмерные параметры.

Чем ниже прочность пористого заполнителя, тем меньше значения А2 и в2.

При оптимальном количестве воды затворения, подо­бранном для применяемых цемента и заполнителей, прочность легкого бетона зависит главным образом от активностиRц и расхода цемента Ц (формула Н. А. Попова):

,

где k и Ц0– параметры, определяемые путем испытания образцов бетона, изготовленных с оптимальным количеством воды, но с раз­ными расходами цемента и твердевших в тех же условиях, что и легкобетонные изделия.

Наряду с прочностью важной характеристикой легкого бетона является плотность. В зависимости от плотности в сухом со­стоянии (кг/м3) легкие бетоны подразделяют на марки: D 200; D 300; D 400; D 500; D 600; D 700; D 800; D 900; D 1000; D 1100; D 1200; D 1300; D 1400; D 1500; D 1600; D 1700; D 1800; D 1900; D 2000.

Теплопроводность легких бетонов зависит в основном от плотности и влажности и для марок D 600-D 1800 изменяется от 0, 15 до 0, 75 Вт/( м× °С). Увеличение объ­емной влажности легкого бетона на 1 % повышает его теплопроводность на 0, 016-0, 035 Вт/(м× °С).

По морозостойкости легкие бетоны делят на марки: F 25; F 35; F 50; F 75; F 100; F 150; F 200; F 300; F 400; F 500. Для наружных стен обычно применяют бетоны морозостойкостью не менее 25 циклов попеременного за­мораживания и оттаивания,

Установлены следующие марки бетона на пористом заполнителе по водонепроницаемости: W 2; W 4; W 6; W 8; W 10; W 12. Характерно, что со временем водонепроницаемость легких бетонов повышается.

Возможность получения легких бетонов с высокой морозостойкостью и малой во­допроницаемостью значительно расширяет области их применения. Бетоны на пористых заполнителях успешно используют в мостостроении, гидротехническом строительстве.

Для обычных легких бетонов слитной структуры с природным песком в качестве мелкого заполнителя, в которых цементно-песчаный раствор полностью заполняет пустоты между зернами крупного пористого заполнителя, характерна достаточно большая плотность (1400 – 1800 кг/м3), что снижает эффективность их применения, прежде всего в ограждающих конструкциях. Более эффективными по сравнению с легкими бетонами слитной структуры как с точки зрения снижения плотности, так и возможности отказа от дефицитного мелкого пористого заполнителя являются поризованные легкие бетоны, в которых роль мелкого заполнителя выполняют мелкие замкнутые поры, получающиеся за счет поризации растворной части с помощью пено- или газообразующих добавок, а также крупнопористые легкие бетоны контактного омоноличивания, в которых не содержится песок и сохраняются крупные межзерновые пустоты. Эти бетоны могут выполнять как конструкционно-теплоизоляционные функции (при плотности 500 – 1400 кг/м3), так и теплоизоляционные функции (при плотности менее 500 кг/м3). Необходимо учитывать, что крупнопористые бетоны характеризуются высокой проницаемостью и требуют защиты от воздействий внешней среды. Поэтому их целесообразно применять, например, в качестве внутреннего теплоизоляционного слоя слоистых ограждающих конструкций и в других аналогичных случаях.

Легкие бетоны на органических заполнителях являются альтернативой бетонам на пористых минеральных заполнителях. Органическими заполнителями являются, например, вещества растительного происхождения: специально измельченная древесина (дробленка), а также отходы деревообработки и сельскохозяйственного производства – стружка, опилки, солома, льняная костра и т.п. В последнее время в качестве легкого заполнителя бетона все шире используют вспученные гранулы полистирола. Основная проблема при получении легких бетонов на органических заполнителях – плохое сцепление этих заполнителей с цементным камнем, а при применении растительных заполнителей – способность к выделению веществ, препятствующих твердению цемента (так называемых «цементных ядов»). Кроме того, органические заполнители при определенных условиях могут загнивать или подвергаться биоповреждениям.

В зависимости от вида органического заполнителя различают виды бетонов: арболит, опилкобетон, костробетон, полистиролбетон и т.п. Чаще всего эти бетоны получают на цементном вяжущем. В то же время известны материалы, аналогичные по принципам построения структуры рассматриваемым бетонам, на других видах вяжущих как минеральных – гипсовых, магнезиальных и др., так и органических – битумных, полимерных и др. Применение этих вяжущих часто решает указанные выше проблемы и позволяет относительно легко получать достаточно прочные материалы. Однако при этом возникают свои недостатки и особенности применения, связанные со свойствами данных вяжущих (например, малая водостойкость – для гипсовых и магнезиальных вяжущих, дороговизна – полимерных и т.д.).

Арболит – это бетон на цементном вяжущем и специально измельченной древесине – дробленке. Для получения заданных свойств в него вводят различные химические добавки: хлористый кальций, жидкое стекло и другие, способствующие минерализации древесного заполнителя и ускорению твердения цемента, а также добавки-антисептики, антипирены и т.д. Арболит в зависимости от средней плотности в сухом состоянии подразделяют на теплоизоляционный (rо< 500 кг/м3) и конструкционно-теплоизоляционный (rо = 500...850 кг/м3). По прочности на сжатие первая разновидность арболита имеет классы от В 0, 35 до В 1, 0, вторая – от В 1, 5 до В 3, 5. Наружная поверхность изделий из арболита, соприкасающаяся с атмосферной влагой, должна иметь отделочный фактурный слой, обеспечивающий защиту материала от увлажнения.

В настоящее время возрождается интерес к опилкобетону, получаемому на основе широко распространенных отходов деревообработки. Традиционный опилкобетон, в состав сырьевой смеси которого входят цемент, опилки, песок и вода, характеризуется сравнительно высокой плотностью (1000 – 1600 кг/м3) и низкой прочностью и не отвечает современным требованиям. Последние достижения в технологии производства этого материала, направленные на улучшение адгезии цементного камня к древесному заполнителю и блокированию «цементных ядов», позволяют снизить содержание песка в составе опилкобетона, увеличивающего его плотность, и получать легкие и достаточно прочные изделия (стеновые камни, блоки и др.) для малоэтажного строительства.

Ячеистые бетоны. Идея получения поризованных бетонов принадлежит пражскому инженеру Гофману, получившему в 1889 г. патент на изготовление бето­нов, пористая структура которых образовывалась за счет выделения углекислого газа при реакции соля­ной кислоты и гидрокарбоната на­трия (NaНСО3). Ячеистые бетоны по плотности и назначению делят на теплоизоляционные с плотностью300...600 кг/м3 и прочностью 0, 4- 1, 2 МПа (иногда называемые поробетонами) и конструктивные с плотностью 600 – 1400 кг/м3 и прочностью 2, 5-15 МПа (поризованные бетоны). Кроме того, в последнее время появились ультралегковесные поробетоны с пониженной средней плотностью (150...300 кг/м3). Пористая структура ячеистым бетонам может придаваться двумя основными путями: а) воздухововлечением, когда сырьевую смесь вяжущего, мелкого заполнителя и воды смешивают с отдельно приготовленной пеной или вводят добавку-пенообразователь непосредственно в специальный смеситель; после отвердевания получают так называемый пенобетон; б) газообразованием, когда в сырьевую смесь вводят добавку-газообразователь; в результате газовыделения смесь вспучивается, и после ее отвердевания получают так называемый газобетон.

Ячеистые бетоны– это особо легкие бетоны с большим количеством (до 85 % и более от общего объема бетона) мелких и средних пор (ячеек) размером до 1-1, 5 мм.По условиям твердения ячеистые бетоны могут быть автоклавные (твердеющие в автоклавах в среде насыщенного водяного пара под давлением 0, 8 – 1 МПа и при температуре 170 – 190 °С) и неавтоклавные (твердеющие в результате тепловлажностной обработки или в естественных условиях). Автоклавные ячеистые бетоны обычно изготовляют на известково-песчаном или другом смешанном известковом вяжущем (газосиликат и пеносиликат). Для ячеистых бетонов неавтоклавного твердения применяют цементное вяжущее (портландцемент марки не ниже М400).

Кремнеземистый компонентячеистых бетонов, в качестве которого могут выступать песок, зола и др., с целью повышения однородности структуры межпоровых перегородок, как правило, дополнительно измельчают.В качестве добавки-газообразователя при получении газобетонов обычно используют алюминиевую пудру, при взаимодействии которой со щелочью (известью) выделяется водород. В качестве добавок-пенообразователей используют синтетические или белковые ПАВ, способствующие получению устойчивых пен. В последние годы в связи с созда­нием эффективных пенообразовате­лей все большее распространение получают неавтоклавные пенобетоны, что обусловлено стремлением упростить изготовление этого мате­риала, сократить энергозатраты на производство и иметь возможность применять его в условиях строитель­ной площадки. При этом пенобетоны отличаются от газобетонов характером своей структуры – замкнутой пористостью с мелкими сферическими порами. Газобетон имеет крупные поры, поэтому он в большей степени, чем пенобетон, нуждается в защите от воздействий окружающей среды.

Плотность неавтоклавного газобетона обычно находится в пределах 400 – 900 кг/м3, а прочность на сжатие – 0, 5 – 3, 5 МПа. Газосиликат отличается более высокими строительно-техническими свойствами (при плотности 300 – 600 кг/м3 прочность на сжатие составляет 0, 75 – 3, 5 МПа). Плотность пенобетона (с использованием в качестве заполнителя мелкого песка естественной дисперсности) обычно находится в пределах
600 –1000 кг/м3, а прочность на сжатие 0, 5 – 3, 5 МПа. Для получения пенобетонов с меньшей средней плотностью используют молотые пески. Иногда с целью снижения плотности и исключения операции помола пенобетон получают на цементном вяжущем без песка. Такой материал называют пеноцементом. Однако этот бетон обладает большой усадкой при высыхании, что снижает его качественные показатели. Получение ячеистых бетонов с пониженной средней плотностью и ультралегковесных поробетонов плотностью 150-300 кг/м3 возможно за счет использования пеногазовой технологии, при которой используется комбинированный порообразователь (газообразователь совместно с пенообразователем), а также ускорители твердения, редуцирующие, водопонижающие и другие добавки.

Пористая структура ячеистых бетонов позволяет легко пилить, сверлить, обрабатывать строительные изделия, появляется возможность модифицировать элементы на строительной площадке. Ячеистый бетон отличается хорошей гвоздимостью. За счет малой массы ячеистобетонных изделий исчезает потребность в автомобильном транспорте и кранах с большой грузоподъёмностью.

Поризованные бетоны отличаются высокой универсальностью, относительной простотой технологии, невысоким уровнем производственных затрат при изготовлении изделий. Это предопределено тем, что получение бетонов в широком диапазоне значений плотности возможно на одном и том же оборудовании с использованием в качестве заполнителя песка естественной дисперсности. Возможность исключения из технологии поризованных бетонов тепловой обработки обеспечивает реальность их эффективного применения в монолитном строительстве.

Наиболее распространённая продукция из ячеистого бетона – это стеновые блоки и камни различных размеров. Как минимум такое изделие по объёму заменяет двенадцать штук силикатного кирпича (при весе в три-четыре раза меньшем), а по теплозащитным свойствам для получения одинакового эффекта толщину стены можно уменьшить в пять-шесть раз. Ячеистобетонные блоки можно применять в несущих наружных сте­нах домов малой и средней (до 4-5) этажности, а также в ненесущих на­ружных стенах многоэтажных зда­ний при соблюдении приемлемой по конструктивным и экономическим соображениям толщины стен. Ячеистый бетон в конструкции наружных стен может удачно соче­таться с кирпичной облицовкой.Сочетание поризованного бетона прочностью 5 – 15 МПа как материала для несущих облегченных элементов малоэтажных зданий, ячеистых бетонов пониженной средней плотности и ультралегковесных поробетонов как материала для ограждающих конструкций позволяет обеспечивать современные требования к теплоэффективности жилых домов.

Железобетон

Железобетон – это композиционный материал, в котором бетон (матрица) и стальная арматура образуют единую систему. Бетон имеет высокую прочность на сжатие, но низкую прочность на растяжение и изгиб. В железобетоне арматуру располагают так, чтобы она воспринимала растягивающие напряжения, а сжимающие напряжения передавались на бетон. Это обеспечивает хорошую работу композиционного материала в изгибаемой конструкции. Совместной работе бетона и арматуры способствует то, что бетон хорошо сцепляется со стальной арматурой; сталь и бетон имеют близкие температурные коэффициенты линейного расширения; стальная арматура в цементном бетоне не подвергается коррозии.

По виду армирования различают изделия с обычным армированием и предварительно напряженные. При обычном армировании в растянутой зоне изгибаемой конструкции возникают трещины, так как предельная растяжимость бетона в 5-6 раз меньше, чем стали. Это не признак того, что конструкция исчерпала свою несущую способность, но при этом возникает опасность коррозии арматуры вследствие нарушения защитного слоя бетона, и долговечность конструкции резко снижается. В предварительно напряженном железобетоне арматуру предварительно напрягают (растягивают), а после твердения бетона освобождают от натяжения. Стремлению арматуры сократиться препятствует бетон, при этом в нем возникают сжимающие напряжения (предварительное обжатие), а в арматуре сохраняются предварительные растягивающие напряжения. Эти напряжения в дальнейшем будут суммироваться с соответствующими напряжениями от эксплуатационных нагрузок. Хотя предварительное напряжение железобетона требует применения высокопрочных стали и бетона, в целом эффективность этого композиционного материала существенно повышается вследствие возможности раскрытия потенциальных ресурсов бетона и стали и резкого увеличения трещиностойкости и долговечности железобетонных конструкций.

Дисперсноармированный (волокнистый) бетон. Для армирования этого бетона применяют различные металлические и неметаллические (стеклянные, базальтовые, асбестовые, углеродные, полимерные и др.) волокна. Стальными и неметаллическими волокнами армируют, как правило, мелкозернистые бетоны, иногда цементный камень. При использовании металлических фибр получают фибробетон. Материалы, армированные асбестовыми волокнами, называют асбестоцементом.

Дисперсное армирование бетона повышает его трещиностойкость, прочность на растяжение, ударную вязкость, сопротивление истиранию. Эффективность применения волокон в бетоне зависит от их содержания. Дисперсное армирование приостанавливает развитие волосяных трещин лишь при расстоянии между отдельными волокнами не более 10 мм, поэтому применение в бетоне крупного заполнителя снижает эффективность подобного армирования. Стальные фибры вводят в бетонную смесь в количестве 1 – 2, 5 % объема бетона (3 – 9 % по массе), что обычно составляет 70 – 200 кг на 1 м3 бетона. При этом повышаются прочность бетона на растяжение (на 10-30 %), ударная прочность, износостойкость.

 

СТРОИТЕЛЬНЫЕ РАСТВОРЫ

Основные понятия и классификация

Строительный раствор – это искусственный каменный материал, получаемый затвердеванием рационально составленной смеси вяжущего, мелкого заполнителя, воды и добавок. В большинстве случаев от раствора не требуется высокой прочности, так как он, как правило, применяется в тонких слоях и, например в случае использования в качестве кладочного раствора, скрепляет между собой более прочные кирпичи и камни, причем прочность кладки в целом зависит не столько от прочности раствора, сколько от того, как он заполняет все неровности и швы в кладке, и чем тоньше слой раствора, тем более низкой может быть его прочность. Поэтому основным свойством этого материала является пластичность (удобоукладываемость) растворной смеси. Поскольку растворную смесь часто укладывают на пористое основание, то большое значение имеет ее водоудерживающая способность. Адгезия (сцепление) раствора к основанию имеет определяющее значение для приклеивающих составов. Для гидроизоляционных растворов основной характеристикой является водонепроницаемость. Указанных свойств у растворов добиваются не увеличением расхода вяжущего, что неэффективно, а применением различных добавок. Среди них важнейшими являются тонкодисперсные минеральные вещества или наполнители (известь, зó лы, тонкомолотые шлаки, дисперсные отходы камнедробления и камнеобработки), которые значительно повышают пластичность и водоудерживающую способность растворов.

По виду вяжущего растворы делят: на цементные, известковые, гипсовые, смешанные (цементно-известковые, известково-гипсовые и т.п.).

По плотности различают тяжелые (обычные) растворы (плотность 1500 – 2200 кг/м3) и легкие растворы (плотность менее 1500 кг/м3). В легких растворах обычный песок заменяют шлаковым песком или другим мелким пористым заполнителем.

По назначению растворы бывают кладочные, монтажные, штукатурные, специальные (декоративные, теплоизоляционные и др.).

Свойства растворов

Под удобоукладываемостью растворной смеси понимают ее способность укладываться на основание тонким однородным слоем. Удобоукладываемость характеризуется подвижностью, которая определяется как глубина погружения металлического конуса массой 300 г в растворную смесь под действием собственного веса, выраженная в сантиметрах. Например, для кладочных растворов подвижность должна быть в пределах 9-13 см, монтажных растворов – 4-6 см и т.д. Как и в бетоне, подвижность растворной смеси определяется расходом воды. В то же время с целью достижения необходимой водоудерживающей способности в составе раствора необходимо достаточное количество тонкодисперсных наполнителей, которое может скомпенсировать относительно небольшой расход вяжущего. В настоящее время для специальных растворов с высокими требованиями по водоудерживающей способности (выравнивающие, приклеивающие составы и т.п.) используют высокоэффективные органические добавки, например эфиры целлюлозы и другие.

Основными свойствами раствора в затвердевшем состоянии являются прочность, сцепление раствора с основанием, морозостойкость и др. Прочность строительного раствора определяется на образцах 70´ 70´ 70 мм, которые при подвижности смеси более 5 см изготавливаются в формах без дна, установленных на пористое основание – кирпич, покрытый смоченной водой бумагой. По среднему значению предела прочности на сжатие серии из трех образцов в возрасте 28 суток определяют марку раствора (М4, М10, М25, М50, М75, М100, М150, М200, М300).

Н.А. Попов предложил определять прочность строительных растворов (в МПа) в возрасте 28 суток по формуле

,

где Rц – активность цемента, МПа; Ц – расход цемента в тоннах на 1 м3 песка; К – эмпирический коэффициент, зависящий от качества песка и минеральной добавки, а также тщательности смешивания раствора. В первом приближении для цементно-известковых растворов в случае крупного песка К = 2, 2; среднего – К = 1, 8; мелкого – К = 1, 4.

В тощих растворах с мелкопористой структурой на их прочность заметно влияет объем воздушной фазы, поэтому прочность таких растворов можно определить по предложенной в 1896 г. формуле Фере

,

где К – коэффициент, учитывающий активность цемента, крупность песка и другие факторы и наиболее просто определяемый опытным путем; Сц, В, Vвоз – абсолютные объемы цемента (Сц = Ц/rц), воды и воздуха.

На прочность растворов, особенно смешанных и состоящих из большого числа компонентов, сильно влияет качество перемешивания. Тщательное перемешивание обеспечивает при минимально необходимых расходах вяжущего и воды требуемую подвижность смеси и прочность раствора.

Сцепление раствора с основанием зависит от многих факторов и, как правило, возрастает в логарифмической зависимости от прочности раствора. Поэтому более эффективное улучшение адгезионных свойств раствора и повышение его сцепления с основанием достигаются за счет введения в состав раствора водорастворимых полимерных добавок (поливинилацетата, поливиниловых спиртов и др.).

По морозостойкости растворы делят на марки: F 10, F 15, F 25, F 35, F 50, F 75, F 100, F 150, F 200, F 300. Морозостойкость раствора в основном зависит от тех же факторов, что и морозостойкость бетона. Значительное повышение морозостойкости раствора достигается применением поверхностно-активных (воздухововлекающих) добавок.

Сухие строительные смеси

Сухие строительные смеси (ССС) – это тщательно перемешанные композиции рационального состава, в которые в сухом виде входят вяжущие вещества, фракционированные заполнители, тонкодисперсные минеральные компоненты, химические добавки. Широкое применение в настоящее время сухих строительных смесей обусловлено расширением номенклатуры растворов, необходимостью обеспечения их качества в условиях их многокомпонентности и использования малых и сверхмалых количеств химических добавок (что практически невозможно при непосредственном приготовлении растворных смесей на строительной площадке).

Сухие строительные смеси подразделяются на простые (бездобавочные) и модифицированные. Наличие большого числа добавок, введенных в стро­го необходимом количестве, – одно из главных отличий модифицированной сухой смеси от товарного раствора, поз­воляющее регулировать в достаточно широком диапа­зоне как строительно-технологические, так и эксплуа­тационные свойства смесей. Использование модифицированных различными добавками сухих смесей позволяет реализовать тонкослойные технологии при выполнении плиточных и штукатурных работ, устройст­ве полов, при выравнивании стен и потолков.

Модификаторы, или добавки, вносимые в смесь в неболь­ших количествах (от 0, 5 до 8 % общего объёма смеси), радикально изменяют физико-химические характеристики смеси. В ре­зультате она приобретает новые, улучшенные эксплуатаци­онные свойства.

Эти новые свойства сухим смесям придают в частности водорастворимые полимеры. В течение 20-30 минут строительный раствор сохраняет пластичность при оптимальном водоцементном отношении. Благодаря медленному высыханию, ис­ключается появление трещин. Увеличиваются эластичность и предел прочности при сжатии, растяжении и изгибе. Повы­шается фиксирующая способность на различных поверхно­стях (бетоне, стали, пористых материалах), в том числе и на таких, с которыми цементный раствор склеивается плохо (дерево, пластмасса). Компенсируются деформации, возни­кающие из-за неодинакового линейного расширения основы и покрытия. Слой штукатурки или клея удаётся сделать зна­чительно тоньше обычного. Всё это расширяет возможности строителей и реставраторов и поднимает качество отделоч­ных работ на значительно более высокий уровень.

Для дальнейшего улуч­шения свойств сухих смесей водорастворимые полимеры применяют в сочетании с редиспергируемыми порошками.

Редиспергируемые порошки– вторая группа модификато­ров сухих смесей. В водном растворе сухой смеси редиспергируемый порошок превращается в клеевую полимерную субстанцию, которая после высыхания оставляет эластич­ные мостики в порах наносимого на основу отделочного ма­териала и на его границе с основой. Эти мостики имеют прочность на разрыв более 5 МПа, что обеспечивает высо­кую адгезию с основой штукатурки, шпатлёвки или клея. Одновременно повышается эластичность при нанесении раствора на основу, а также влагостойкость и прочность на изгиб и истираемость.

Важной характеристикой редиспергируемого порошка яв­ляется минимальная температура плёнкообразования, ниже которой полимерные частички теряют эластичность. Чем ниже минимальная температура плёнкообразования, тем легче работать в холодное время года. Некоторые из редиспергируемых порошков дают возможность вести отделоч­ные работы зимой без потери качества.

Наряду с водорастворимыми полимерами и редиспергируемыми порошками применяют, хотя и значительно реже, другие добавки (пластификаторы, замедлители схватывания, гидрофобизаторы, пеногасители и т.д.).

Завод сухих смесей, который имеет несколько силосов для песка, позволяет выполнить раздельное дозирование мелкой, средней и крупной фракций в необходимом ко­личестве, но только в том случае, если песок перед загруз­кой будет высушен и разделен на фракции нужных разме­ров. При этом влажность песка и наполнителей не должна превышать 0, 1 %.

Изготовляемые в настоящее время цементно-песчаные сухие смеси производятся на основе традиционно выпускаемого портландцемента марок ПЦ-400 или ПЦ-500, что не всегда экономически и технологически оправданно. Вместе с тем большинство регионов стра­ны располагает достаточными запасами местных мате­риалов для организации производства наполненных композитных вяжущих низких и средних марок и сухих строительных смесей на их основе.

 


Поделиться:



Популярное:

  1. Анестезия безыгольным струйным способом.
  2. Асфальтовые бетоны и растворы
  3. Будущее неавтономных способов входа в фазу
  4. Внушите себе чувство глубокого убеждения в том, что ваше желание будет осуществлено самым быстрым и лучшим способом.
  5. Воздух – легкие, дыхание, почки, кровь.
  6. Выбор марки проводов, сечения проводов и способов их прокладки
  7. Выполнение ИВЛ способом «рот в рот», «рот в нос», мешком АМБУ
  8. Вычисление расхода взвешенных наносов графическим способом
  9. Вычисление расхода воды графическим способом
  10. Выявление способов незаконного перемещения товаров и транспортных средств через таможенную границу РФ.
  11. Данные рассчитаны на человека, имеющего средние по весу кости. Если ваши кости тяжелые - прибавляйте 4,5 кг, если легкие - вычитайте 4,5 кг.
  12. Движение «Зеленые» провели Конференцию по вопросам взаимодействия промышленных предприятий, особо охраняемые природные территории (ООПТ) и регионов


Последнее изменение этой страницы: 2016-07-12; Просмотров: 608; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.048 с.)
Главная | Случайная страница | Обратная связь