Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Иерархия запоминающих устройств. Принцип кэширования данных



Память вычислительной машины представляет собой иерархию запоминающих устройств (внутренние регистры процессора, различные типы сверхоперативной и оперативной памяти, диски, ленты), отличающихся средним временем доступа и стоимостью хранения данных в расчете на один бит (рисунок 2.17). Пользователю хотелось бы иметь и недорогую и быструю память. Кэш-память представляет некоторое компромиссное решение этой проблемы.

Рис. 2.17. Иерархия ЗУ

Кэш-память - это способ организации совместного функционирования двух типов запоминающих устройств, отличающихся временем доступа и стоимостью хранения данных, который позволяет уменьшить среднее время доступа к данным за счет динамического копирования в " быстрое" ЗУ наиболее часто используемой информации из " медленного" ЗУ.

Кэш-памятью часто называют не только способ организации работы двух типов запоминающих устройств, но и одно из устройств - " быстрое" ЗУ. Оно стоит дороже и, как правило, имеет сравнительно небольшой объем. Важно, что механизм кэш-памяти является прозрачным для пользователя, который не должен сообщать никакой информации об интенсивности использования данных и не должен никак участвовать в перемещении данных из ЗУ одного типа в ЗУ другого типа, все это делается автоматически системными средствами.

Рассмотрим частный случай использования кэш-памяти для уменьшения среднего времени доступа к данным, хранящимся в оперативной памяти. Для этого между процессором и оперативной памятью помещается быстрое ЗУ, называемое просто кэш-памятью (рисунок 2.18). В качестве такового может быть использована, например, ассоциативная память. Содержимое кэш-памяти представляет собой совокупность записей обо всех загруженных в нее элементах данных. Каждая запись об элементе данных включает в себя адрес, который этот элемент данных имеет в оперативной памяти, и управляющую информацию: признак модификации и признак обращения к данным за некоторый последний период времени.

Рис. 2.18. Кэш-память

В системах, оснащенных кэш-памятью, каждый запрос к оперативной памяти выполняется в соответствии со следующим алгоритмом:

1. Просматривается содержимое кэш-памяти с целью определения, не находятся ли нужные данные в кэш-памяти; кэш-память не является адресуемой, поэтому поиск нужных данных осуществляется по содержимому - значению поля " адрес в оперативной памяти", взятому из запроса.

2. Если данные обнаруживаются в кэш-памяти, то они считываются из нее, и результат передается в процессор.

3. Если нужных данных нет, то они вместе со своим адресом копируются из оперативной памяти в кэш-память, и результат выполнения запроса передается в процессор. При копировании данных может оказаться, что в кэш-памяти нет свободного места, тогда выбираются данные, к которым в последний период было меньше всего обращений, для вытеснения из кэш-памяти. Если вытесняемые данные были модифицированы за время нахождения в кэш-памяти, то они переписываются в оперативную память. Если же эти данные не были модифицированы, то их место в кэш-памяти объявляется свободным.

На практике в кэш-память считывается не один элемент данных, к которому произошло обращение, а целый блок данных, это увеличивает вероятность так называемого " попадания в кэш", то есть нахождения нужных данных в кэш-памяти.

Покажем, как среднее время доступа к данным зависит от вероятности попадания в кэш. Пусть имеется основное запоминающие устройство со средним временем доступа к данным t1 и кэш-память, имеющая время доступа t2, очевидно, что t2< t1. Обозначим через t среднее время доступа к данным в системе с кэш-памятью, а через p -вероятность попадания в кэш. По формуле полной вероятности имеем:

t = t1((1 - p) + t2(p

Из нее видно, что среднее время доступа к данным в системе с кэш-памятью линейно зависит от вероятности попадания в кэш и изменяется от среднего времени доступа в основное ЗУ (при р=0) до среднего времени доступа непосредственно в кэш-память (при р=1).

В реальных системах вероятность попадания в кэш составляет примерно 0, 9. Высокое значение вероятности нахождения данных в кэш-памяти связано с наличием у данных объективных свойств: пространственной и временной локальности.

  • Пространственная локальность. Если произошло обращение по некоторому адресу, то с высокой степенью вероятности в ближайшее время произойдет обращение к соседним адресам.
  • Временная локальность. Если произошло обращение по некоторому адресу, то следующее обращение по этому же адресу с большой вероятностью произойдет в ближайшее время.

Все предыдущие рассуждения справедливы и для других пар запоминающих устройств, например, для оперативной памяти и внешней памяти. В этом случае уменьшается среднее время доступа к данным, расположенным на диске, и роль кэш-памяти выполняет буфер в оперативной памяти.

 

ВОПРОС 18-24

Имена файлов

Файлы идентифицируются именами. Пользователи дают файлам символьные имена, при этом учитываются ограничения ОС как на используемые символы, так и на длину имени. До недавнего времени эти границы были весьма узкими. Так в популярной файловой системе FAT длина имен ограничивается известной схемой 8.3 (8 символов - собственно имя, 3 символа - расширение имени), а в ОС UNIX System V имя не может содержать более 14 символов. Однако пользователю гораздо удобнее работать с длинными именами, поскольку они позволяют дать файлу действительно мнемоническое название, по которому даже через достаточно большой промежуток времени можно будет вспомнить, что содержит этот файл. Поэтому современные файловые системы, как правило, поддерживают длинные символьные имена файлов. Например, Windows NT в своей новой файловой системе NTFS устанавливает, что имя файла может содержать до 255 символов, не считая завершающего нулевого символа.

При переходе к длинным именам возникает проблема совместимости с ранее созданными приложениями, использующими короткие имена. Чтобы приложения могли обращаться к файлам в соответствии с принятыми ранее соглашениями, файловая система должна уметь предоставлять эквивалентные короткие имена (псевдонимы) файлам, имеющим длинные имена. Таким образом, одной из важных задач становится проблема генерации соответствующих коротких имен.

Длинные имена поддерживаются не только новыми файловыми системами, но и новыми версиями хорошо известных файловых систем. Например, в ОС Windows 95 используется файловая система VFAT, представляющая собой существенно измененный вариант FAT. Среди многих других усовершенствований одним из главных достоинств VFAT является поддержка длинных имен. Кроме проблемы генерации эквивалентных коротких имен, при реализации нового варианта FAT важной задачей была задача хранения длинных имен при условии, что принципиально метод хранения и структура данных на диске не должны были измениться.

Обычно разные файлы могут иметь одинаковые символьные имена. В этом случае файл однозначно идентифицируется так называемым составным именем, представляющем собой последовательность символьных имен каталогов. В некоторых системах одному и тому же файлу не может быть дано несколько разных имен, а в других такое ограничение отсутствует. В последнем случае операционная система присваивает файлу дополнительно уникальное имя, так, чтобы можно было установить взаимно-однозначное соответствие между файлом и его уникальным именем. Уникальное имя представляет собой числовой идентификатор и используется программами операционной системы. Примером такого уникального имени файла является номер индексного дескриптора в системе UNIX.

Типы файлов

Файлы бывают разных типов: обычные файлы, специальные файлы, файлы-каталоги.

Обычные файлы в свою очередь подразделяются на текстовые и двоичные. Текстовые файлы состоят из строк символов, представленных в ASCII-коде. Это могут быть документы, исходные тексты программ и т.п. Текстовые файлы можно прочитать на экране и распечатать на принтере. Двоичные файлы не используют ASCII-коды, они часто имеют сложную внутреннюю структуру, например, объектный код программы или архивный файл. Все операционные системы должны уметь распознавать хотя бы один тип файлов - их собственные исполняемые файлы.

Специальные файлы - это файлы, ассоциированные с устройствами ввода-вывода, которые позволяют пользователю выполнять операции ввода-вывода, используя обычные команды записи в файл или чтения из файла. Эти команды обрабатываются вначале программами файловой системы, а затем на некотором этапе выполнения запроса преобразуются ОС в команды управления соответствующим устройством. Специальные файлы, так же как и устройства ввода-вывода, делятся на блок-ориентированные и байт-ориентированные.

Каталог - это, с одной стороны, группа файлов, объединенных пользователем исходя из некоторых соображений (например, файлы, содержащие программы игр, или файлы, составляющие один программный пакет), а с другой стороны - это файл, содержащий системную информацию о группе файлов, его составляющих. В каталоге содержится список файлов, входящих в него, и устанавливается соответствие между файлами и их характеристиками (атрибутами).

В разных файловых системах могут использоваться в качестве атрибутов разные характеристики, например:

  • информация о разрешенном доступе,
  • пароль для доступа к файлу,
  • владелец файла,
  • создатель файла,
  • признак " только для чтения",
  • признак " скрытый файл",
  • признак " системный файл",
  • признак " архивный файл",
  • признак " двоичный/символьный",
  • признак " временный" (удалить после завершения процесса),
  • признак блокировки,
  • длина записи,
  • указатель на ключевое поле в записи,
  • длина ключа,
  • времена создания, последнего доступа и последнего изменения,
  • текущий размер файла,
  • максимальный размер файла.

Каталоги могут непосредственно содержать значения характеристик файлов, как это сделано в файловой системе MS-DOS, или ссылаться на таблицы, содержащие эти характеристики, как это реализовано в ОСUNIX (рисунок 2.31). Каталоги могут образовывать иерархическую структуру за счет того, что каталог более низкого уровня может входить в каталог более высокого уровня (рисунок 2.32).

Рис. 2.31. Структура каталогов: а - структура записи каталога MS-DOS (32 байта);
б - структура записи каталога ОС UNIX

Иерархия каталогов может быть деревом или сетью. Каталоги образуют дерево, если файлу разрешено входить только в один каталог, и сеть - если файл может входить сразу в несколько каталогов. В MS-DOSкаталоги образуют древовидную структуру, а в UNIX'е - сетевую. Как и любой другой файл, каталог имеет символьное имя и однозначно идентифицируется составным именем, содержащим цепочку символьных имен всех каталогов, через которые проходит путь от корня до данного каталога.

Рис. 2.32. Логическая организация файловой системы
а - одноуровневая; б - иерархическая (дерево); в - иерархическая (сеть)


Поделиться:



Популярное:

  1. I. 49. Основные принципы разработки системы применения удобрений.
  2. I.Сущность и принципы финн контроля
  3. MS Access. Внесение данных в таблицы.
  4. Аденовирусы. Характеристика возбудителей, принципы лабораторной диагностики.
  5. Айкидо – это искусство внутренней гармонии и бесконфликтного харизматичного общения в жизни и в бизнесе, основанное на принципах айкидо.
  6. Алгоритм обработки и анализа данных
  7. АНТИТЕЛА. СЕРОЛОГИЧЕСКИЕ РЕАКЦИИ В РЕАЛИЗАЦИИ II ПРИНЦИПА ДИАГНОСТИКИ.
  8. Аттестация государственных служащих: понятие, цели, задачи, функции, принципы.
  9. Базовые и противоп-е принципы орг-и пр-ва.
  10. Безналичные расчеты. Принципы организации системы безналичных расчетов
  11. Билет 15. Цикл былин об Алеше Поповиче. Принципы создания образа богатыря в былинах ( Алеша и Тугарин, Алеша и Илья Муромец).
  12. Билет 9 Дифракция света. Принцип Гюйгенса-Френеля.. Метод зон Френеля.


Последнее изменение этой страницы: 2016-07-14; Просмотров: 813; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь