Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Тенденция к сближению локальных и глобальных сетей
Если принять во внимание все перечисленные выше различия локальных и глобальных сетей, то становится понятным, почему так долго могли существовать раздельно два сообщества специалистов, занимающиеся этими двумя видами сетей. Но за последние годы ситуация резко изменилась. Специалисты по локальным сетям, перед которыми встали задачи объединения нескольких локальных сетей, расположенных в разных, географически удаленных друг от друга пунктах, были вынуждены начать освоение чуждого для них мира глобальных сетей и телекоммуникаций. Тесная интеграция удаленных локальных сетей не позволяет рассматривать глобальные сети в виде «черного ящика», представляющего собой только инструмент транспортировки сообщений на большие расстояния. Поэтому все, что связано с глобальными связями и удаленным доступом, стало предметом повседневного интереса многих специалистов по локальным сетям. С другой стороны, стремление повысить пропускную способность, скорость передачи данных, расширить набор и оперативность служб, другими словами, стремление улучшить качество предоставляемых услуг - все это заставило специалистов по глобальным сетям обратить пристальное внимание на технологии, используемые в локальных сетях. Таким образом, в мире локальных и глобальных сетей явно наметилось движение навстречу друг другу, которое уже сегодня привело к значительному взаимопроникновению технологий локальных и глобальных сетей. Одним из проявлений этого сближения является появление сетей масштаба большого города (MAN), занимающих промежуточное положение между локальными и глобальными сетями. При достаточно больших расстояниях между узлами они обладают качественными линиями связи и высокими скоростями обмена, даже более высокими, чем в классических локальных сетях. Как и в случае локальных сетей, при построении MAN уже существующие линии связи не используются, а прокладываются заново. Сближение в методах передачи данных происходит на платформе оптической цифровой (немодулированной) передачи данных по оптоволоконным линиям связи. Из-за резкого улучшения качества каналов связи в глобальных сетях начали отказываться от сложных и избыточных процедур обеспечения корректности передачи данных. Примером могут служить сети frame relay. В этих сетях предполагается, что искажение бит происходит настолько редко, что ошибочный пакет просто уничтожается, а все проблемы, связанные с его потерей, решаются программами прикладного уровня, которые непосредственно не входят в состав сети frame relay. За счет новых сетевых технологий и, соответственно, нового оборудования, рассчитанного на более качественные линии связи, скорости передачи данных в уже существующих коммерческих глобальных сетях нового поколения приближаются к традиционным скоростям локальных сетей (в сетях frame relay сейчас доступны скорости 2 Мбит/с), а в глобальных сетях АТМ и превосходят их, достигая 622 Мбит/с. В результате службы для режима on-line становятся обычными и в глобальных сетях. Наиболее яркий пример - гипертекстовая информационная служба World Wide Web, ставшая основным поставщиком информации в сети Internet. Ее интерактивные возможности превзошли возможности многих аналогичных служб локальных сетей, так что разработчикам локальных сетей пришлось просто позаимствовать эту службу у глобальных сетей. Процесс переноса служб и технологий из глобальных сетей в локальные приобрел такой массовый характер, что появился даже специальный термин - intranet-технологии (intra - внутренний), обозначающий применение служб внешних (глобальных) сетей во внутренних - локальных. Локальные сети перенимают у глобальных сетей и транспортные технологии. Все новые скоростные технологии (Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN) поддерживают работу по индивидуальным линиям связи наряду с традиционными для локальных сетей разделяемыми линиями. Для организации индивидуальных линий связи используется специальный тип коммуникационного оборудования - коммутаторы. Коммутаторы локальных сетей соединяются между собой по иерархической схеме, подобно тому, как это делается в телефонных сетях: имеются коммутаторы нижнего уровня, к которым непосредственно подключаются компьютеры сети, коммутаторы следующего уровня соединяют между собой коммутаторы нижнего уровня и т. д. Коммутаторы более высоких уровней обладают, как правило, большей производительностью и работают с более скоростными каналами, уплотняя данные нижних уровней. Коммутаторы поддерживают не только новые протоколы локальных сетей, но и традиционные - Ethernet и Token Ring. В локальных сетях в последнее время уделяется такое же большое внимание методам обеспечения защиты информации от несанкционированного доступа, как и в глобальных сетях. Такое внимание обусловлено тем, что локальные сети перестали быть изолированными, чаще всего они имеют выход в «большой мир» через глобальные связи. При этом часто используются те же методы - шифрование данных, аутентификация пользователей, возведение защитных барьеров, предохраняющих от проникновения в сеть извне. И наконец, появляются новые технологии, изначально предназначенные для обоих видов сетей. Наиболее ярким представителем нового поколения технологий является технология АТМ, которая может служить основой не только локальных и глобальных компьютерных сетей, но и телефонных сетей, а также широковещательных видеосетей, объединяя все существующие типы трафика в одной транспортной сети. Выводы Классифицируя сети по территориальному признаку, различают локальные (LAN), глобальные (WAN) и городские (MAN) сети. LAN - сосредоточены на территории не более 1-2 км; построены с использованием дорогих высококачественных линий связи, которые позволяют, применяя простые методы передачи данных, достигать высоких скоростей обмена данными порядка 100 Мбит/с. Предоставляемые услуги отличаются широким разнообразием и обычно предусматривают реализацию в режиме on-line. WAN - объединяют компьютеры, рассредоточенные на расстоянии сотен и тысяч километров. Часто используются уже существующие не очень качественные линии связи. Более низкие, чем в локальных сетях, скорости передачи данных (десятки килобит в секунду) ограничивают набор предоставляемых услуг передачей файлов, преимущественно не в оперативном, а в фоновом режиме, с использованием электронной почты. Для устойчивой передачи дискретных данных применяются более сложные методы и оборудование, чем в локальных сетях. MAN - занимают промежуточное положение между локальными и глобальными сетями. При достаточно больших расстояниях между узлами (десятки километров) они обладают качественными линиями связи и высокими скоростями обмена, иногда даже более высокими, чем в классических локальных сетях. Как и в случае локальных сетей, при построении MAN уже существующие линии связи не используются, а прокладываются заново. Сети отделов, кампусов и корпораций Еще одним популярным способом классификации сетей является их классификация по масштабу производственного подразделения, в пределах которого действует сеть. Различают сети отделов, сети кампусов и корпоративные сети. Сети отделов Сети отделов - это сети, которые используются сравнительно небольшой группой сотрудников, работающих в одном отделе предприятия. Эти сотрудники решают некоторые общие задачи, например ведут бухгалтерский учет или занимаются маркетингом. Считается, что отдел может насчитывать до 100-150 сотрудников. Главной целью сети отдела является разделение локальных ресурсов, таких как приложения, данные, лазерные принтеры и модемы. Обычно сети отделов имеют один или два файловых сервера и не более тридцати пользователей (рис. 1.31). Сети отделов обычно не разделяются на подсети. В этих сетях локализуется большая часть трафика предприятия. Сети отделов обычно создаются на основе какой-либо одной сетевой технологии - Ethernet, Token Ring. Для такой сети характерен один или, максимум, два типа операционных систем. Чаще всего - это сеть с выделенным сервером, например NetWare, хотя небольшое количество пользователей делает возможным использование одноранговых сетевых ОС, таких, например, как Windows 95. Рис. 1.31. Пример сети масштаба отдела Задачи управления сетью на уровне отдела относительно просты: добавление новых пользователей, устранение простых отказов, инсталляция новых узлов и установка новых версий программного обеспечения. Такой сетью может управлять сотрудник, посвящающий обязанностям администратора только часть своего времени. Чаще всего администратор сети отдела не имеет специальной подготовки, но является тем человеком в отделе, который лучше всех разбирается в компьютерах, и само собой получается так, что он занимается администрированием сети. Существует и другой тип сетей, близкий к сетям отделов, - сети рабочих групп. К таким сетям относят совсем небольшие сети, включающие до 10-20 компьютеров, Характеристики сетей рабочих групп практически не отличаются от описанных выше характеристик сетей отделов. Такие свойства, как простота сети и однородность, здесь проявляются в наибольшей степени, в то время как сети отделов могут приближаться в некоторых случаях к следующему по масштабу типу сетей - сетям кампусов. Сети кампусов Сети кампусов получили свое название от английского слова campus - студенческий городок. Именно на территории университетских городков часто возникала необходимость объединения нескольких мелких сетей в одну большую сеть. Сейчас это название не связывают со студенческими городками, а используют для обозначения сетей любых предприятий и организаций. Главными особенностями сетей кампусов являются следующие (рис. 1.32). Сети этого типа объединяют множество сетей различных отделов одного предприятия в пределах отдельного здания или в пределах одной территории, покрывающей площадь в несколько квадратных километров. При этом глобальные соединения в сетях кампусов не используются. Службы такой сети включают взаимодействие между сетями отделов, доступ к общим базам данных предприятия, доступ к общим факс-серверам, высокоскоростным модемам и высокоскоростным принтерам. В результате сотрудники каждого отдела предприятия получают доступ к некоторьм файлам и ресурсам сетей других отделов. Важной службой, предоставляемой сетями кампусов, стал доступ к корпоративным базам данных независимо от того, на каких типах компьютеров они располагаются. Рис. 1.32. Пример сети кампуса Именно на уровне сети кампуса возникают проблемы интеграции неоднородного аппаратного и программного обеспечения. Типы компьютеров, сетевых операционных систем, сетевого аппаратного обеспечения могут отличаться в каждом отделе. Отсюда вытекают сложности управления сетями кампусов. Администраторы должны быть в этом случае более квалифицированными, а средства оперативного управления сетью - более совершенными. Корпоративные сети Корпоративные сети называют также сетями масштаба предприятия, что соответствует дословному переводу термина «enterprise-wide networks», используемого в англоязычной литературе для обозначения этого типа сетей. Сети масштаба предприятия (корпоративные сети) объединяют большое количество компьютеров на всех территориях отдельного предприятия. Они могут быть сложно связаны и покрывать город, регион или даже континент. Число пользователей и компьютеров может измеряться тысячами, а число серверов - сотнями, расстояния между сетями отдельных территорий могут оказаться такими, что становится необходимым использование глобальных связей (рис. 1.33). Для соединения удаленных локальных сетей и отдельных компьютеров в корпоративной сети применяются разнообразные телекоммуникационные средства, в том числе телефонные каналы, радиоканалы, спутниковая связь. Корпоративную сеть можно представить в виде «островков локальных сетей», плавающих в телекоммуникационной среде. Рис. 1.33. Пример корпоративной сети Непременным атрибутом такой сложной и крупномасштабной сети является высокая степень гетерогенности - нельзя удовлетворить потребности тысяч пользователей с помощью однотипных программных и аппаратных средств. В корпоративной сети обязательно будут использоваться различные типы компьютеров - от мэйнфреймов до персоналок, несколько типов операционных систем и множество различных приложений. Неоднородные части корпоративной сети должны работать как единое целое, предоставляя пользователям по возможности прозрачный доступ ко всем необходимым ресурсам. Появление корпоративных сетей - это хорошая иллюстрация известного философского постулата о переходе количества в качество. При объединении отдельных сетей крупного предприятия, имеющего филиалы в разных городах и даже странах, в единую сеть многие количественные характеристики объединенной сети превосходят некоторый критический порог, за которым начинается новое качество. В этих условиях существующие методы и подходы к решению традиционных задач сетей меньших масштабов для корпоративных сетей оказались непригодными. На первый план вышли такие задачи и проблемы, которые в сетях рабочих групп, отделов и даже кампусов либо имели второстепенное значение, либо вообще не проявлялись. Примером может служить простейшая (для небольших сетей) задача - ведение учетных данных о пользователях сети. Наиболее простой способ ее решения - помещение учетных данных каждого пользователя в локальную базу учетных данных каждого компьютера, к ресурсам которого пользователь должен иметь доступ. При попытке доступа эти данные извлекаются из локальной учетной базы и на их основе доступ предоставляется или не предоставляется. Для небольшой сети, состоящей из 5-10 компьютеров и примерно такого же количества пользователей, такой способ работает очень хорошо. Но если в сети насчитывается несколько тысяч пользователей, каждому из которых нужен доступ к нескольким десяткам серверов, то, очевидно, это решение становится крайне неэффективным. Администратор должен повторить несколько десятков раз операцию занесения учетных данных пользователя. Сам пользователь также вынужден повторять процедуру логического входа каждый раз, когда ему нужен доступ к ресурсам нового сервера. Хорошее решение этой проблемы для крупной сети - использование централизованной справочной службы, в базе данной которой хранятся учетные записи всех пользователей сети. Администратор один раз выполняет операцию занесения данных пользователя в эту базу, а пользователь один раз выполняет процедуру логического входа, причем не в отдельный сервер, а в сеть целиком. При переходе от более простого типа сетей к более сложному - от сетей отдела к корпоративной сети - сеть должна быть все более надежной и отказоустойчивой, при этом требования к ее производительности также существенно возрастают. По мере увеличения масштабов сети увеличиваются и ее функциональные возможности. По сети циркулирует все возрастающее количество данных, и сеть должна обеспечивать их безопасность и защищенность наряду с доступностью. Соединения, обеспечивающие взаимодействие, должны быть более прозрачными. При каждом переходе на следующий уровень сложности компьютерное оборудование сети становится все более разнообразным, а географические расстояния увеличиваются, делая достижение целей более сложным; более проблемным и дорогостоящим становится управление такими соединениями. Выводы В зависимости от масштаба производственного подразделения, в пределах которого действует сеть, различают сети отделов, сети кампусов и корпоративные сети. Сети отделов используются небольшой группой сотрудников в основном с целью разделения дорогостоящих периферийных устройств, приложений и данных; имеют один-два файловых сервера и не более тридцати пользователей; обычно не разделяются на подсети; создаются на основе какой-либо одной сетевой технологии; могут работать на базе одноранговых сетевых ОС. Сети кампусов объединяют сети отделов в пределах отдельного здания или одной территории площадью в несколько квадратных километров, при этом глобальные соединения не используются. На уровне сети кампуса возникают проблемы интеграции и управления неоднородным аппаратным и программным обеспечением. Корпоративные сети объединяют большое количество компьютеров на всех территориях отдельного предприятия. Для корпоративной сети характерны: масштабность - тысячи пользовательских компьютеров, сотни серверов, огромные объемы хранимых и передаваемых по линиям связи данных, множество разнообразных приложений; высокая степень гетерогенности - типы компьютеров, коммуникационного оборудования, операционных систем и приложений различны; использование глобальных связей - сети филиалов соединяются с помощью телекоммуникационных средств, в том числе телефонных каналов, радиоканалов, спутниковой связи. Требования, предъявляемые к современным вычислительным сетям Главным требованием, предъявляемым к сетям, является выполнение сетью ее основной функции - обеспечение пользователям потенциальной возможности доступа к разделяемым ресурсам всех компьютеров, объединенных в сеть. Все остальные требования - производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость - связаны с качеством выполнения этой основной задачи. Хотя все эти требования весьма важны, часто понятие «качество обслуживания» (Quality of Service, QoS) компьютерной сети трактуется более узко - в него включаются только две самые важные характеристики сети - производительность и надежность. Независимо от выбранного показателя качества обслуживания сети существуют два подхода к его обеспечению. Первый подход, очевидно, покажется наиболее естественным с точки зрения пользователя сети. Он состоит в том, что сеть (точнее, обслуживающий ее персонал) гарантирует пользователю соблюдение некоторой числовой величины показателя качества обслуживания. Например, сеть может гарантировать пользователю А, что любой из его пакетов, посланных пользователю В, будет задержан сетью не более, чем на 150 мс. Или, что средняя пропускная способность канала между пользователями А и В не будет ниже 5 Мбит/с, при этом канал будет разрешать пульсации трафика в 10 Мбит на интервалах времени не более 2 секунд. Технологии frame relay и АТМ позволяют строить сети, гарантирующие качество обслуживания по производительности. Второй подход состоит в том, что сеть обслуживает пользователей в соответствии с их приоритетами. То есть качество обслуживания зависит от степени привилегированности пользователя или группы пользователей, к которой он принадлежит. Качество обслуживания в этом случае не гарантируется, а гарантируется только уровень привилегий пользователя. Такое обслуживание называется обслуживанием best effort - с наибольшим старанием. Сеть старается по возможности более качественно обслужить пользователя, но ничего при этом не гарантирует. По такому принципу работают, например, локальные сети, построенные на коммутаторах с приоритезацией кадров. Производительность Потенциально высокая производительность - это одно из основных свойств распределенных систем, к которым относятся компьютерные сети. Это свойство обеспечивается возможностью распараллеливания работ между несколькими компьютерами сети. К сожалению, эту возможность не всегда удается реализовать. Существует несколько основных характеристик производительности сети: время реакции; пропускная способность; задержка передачи и вариация задержки передачи. Время реакциисети является интегральной характеристикой производительности сети с точки зрения пользователя. Именно эту характеристику имеет в виду пользователь, когда говорит: «Сегодня сеть работает медленно». В общем случае время реакции определяется как интервал времени между возникновением запроса пользователя к какой-либо сетевой службе и получением ответа на этот запрос. Очевидно, что значение этого показателя зависит от типа службы, к которой обращается пользователь, от того, какой пользователь и к какому серверу обращается, а также от текущего состояния элементов сети - загруженности сегментов, коммутаторов и маршрутизаторов, через которые проходит запрос, загруженности сервера и т. п. Поэтому имеет смысл использовать также и средневзвешенную оценку времени реакции сети, усредняя этот показатель по пользователям, серверам и времени дня (от которого в значительной степени зависит загрузка сети). Время реакции сети обычно складывается из нескольких составляющих. В общем случае в него входит время подготовки запросов на клиентском компьютере, время передачи запросов между клиентом и сервером через сегменты сети и промежуточное коммуникационное оборудование, время обработки запросов на сервере, время передачи ответов от сервера клиенту и время обработки получаемых от сервера ответов на клиентском компьютере. Ясно, что пользователя разложение времени реакции на составляющие не интересует - ему важен конечный результат, однако для сетевого специалиста очень важно выделить из общего времени реакции составляющие, соответствующие этапам собственно сетевой обработки данных, - передачу данных от клиента к серверу через сегменты сети и коммуникационное оборудование. Знание сетевых составляющих времени реакции дает возможность оценить производительность отдельных элементов сети, выявить узкие места и в случае необходимости выполнить модернизацию сети для повышения ее общей производительности. Пропускная способность отражает объем данных, переданных сетью или ее частью в единицу времени. Пропускная способность уже не является пользовательской характеристикой, так как она говорит о скорости выполнения внутренних операций сети - передачи пакетов данных между узлами сети через различные коммуникационные устройства. Зато она непосредственно характеризует качество выполнения основной функции сети - транспортировки сообщений - и поэтому чаще используется при анализе производительности сети, чем время реакции. Пропускная способность измеряется либо в битах в секунду, либо в пакетах в секунду. Пропускная способность может быть мгновенной, максимальной и средней. Средняя пропускная способность вычисляется путем деления общего объема переданных данных на время их передачи, причем выбирается достаточно длительный промежуток времени - час, день или неделя. Мгновенная пропускная способность отличается от средней тем, что для усреднения выбирается очень маленький промежуток времени - например, 10 мс или 1 с. Максимальная пропускная способность - это наибольшая мгновенная пропускная способность, зафиксированная в течение периода наблюдения. Чаще всего при проектировании, настройке и оптимизации сети используются такие показатели, как средняя и максимальная пропускные способности. Средняя пропускная способность отдельного элемента или всей сети позволяет оценить работу сети на большом промежутке времени, в течение которого в силу закона больших чисел пики и спады интенсивности трафика компенсируют друг друга. Максимальная пропускная способность позволяет оценить возможности сети справляться с пиковыми нагрузками, характерными для особых периодов работы сети, например утренних часов, когда сотрудники предприятия почти одновременно регистрируются в сети и обращаются к разделяемым файлам и базам данных. Пропускную способность можно измерять между любыми двумя узлами или точками сети, например между клиентским компьютером и сервером, между входным и выходным портами маршрутизатора. Для анализа и настройки сети очень полезно знать данные о пропускной способности отдельных элементов сети. Важно отметить, что из-за последовательного характера передачи пакетов различными элементами сети общая пропускная способность сети любого составного пути в сети будет равна минимальной из пропускных способностей составляющих элементов маршрута. Для повышения пропускной способности составного пути необходимо в первую очередь обратить внимание на самые медленные элементы - в данном случае таким элементом, скорее всего, будет маршрутизатор. Следует подчеркнуть, что если передаваемый по составному пути трафик будет иметь среднюю интенсивность, превосходящую среднюю пропускную способность самого медленного элемента пути, то очередь пакетов к этому элементу будет расти теоретически до бесконечности, а практически - до тех пор, пока не заполниться его буферная память, а затем пакеты просто начнут отбрасываться и теряться. Иногда полезно оперировать с общей пропускной способностью сети, которая определяется как среднее количество информации, переданной между всеми узлами сети в единицу времени. Этот показатель характеризует качество сети в целом, не дифференцируя его по отдельным сегментам или устройствам. Обычно при определении пропускной способности сегмента или устройства в передаваемых данных не выделяются пакеты какого-то определенного пользователя, приложения или компьютера - подсчитывается общий объем передаваемой информации. Тем не менее для более точной оценки качества обслуживания такая детализации желательна, и в последнее время системы управления сетями все чаще позволяют ее выполнять. Задержка передачи определяется как задержка между моментом поступления пакета на вход какого-либо сетевого устройства или части сети и моментом появления его на выходе этого устройства. Этот параметр производительности по смыслу близок ко времени реакции сети, но отличается тем, что всегда характеризует только сетевые этапы обработки данных, без задержек обработки компьютерами сети. Обычно качество сети характеризуют величинами максимальной задержки передами и вариацией задержки. Не все типы трафика чувствительны к задержкам передачи, во всяком случае, к тем величинам задержек, которые характерны для компьютерных сетей, - обычно задержки не превышают сотен миллисекунд, реже - нескольких секунд. Такого порядка задержки пакетов, порождаемых файловой службой, службой электронной почты или службой печати, мало влияют на качество этих служб с точки зрения пользователя сети. С другой стороны, такие же задержки пакетов, переносящих голосовые данные или видеоизображение, могут приводить к значительному снижению качества предоставляемой пользователю информации - возникновению эффекта «эха», невозможности разобрать некоторые слова, дрожание изображения и т. п. Пропускная способность и задержки передачи являются независимыми параметрами, так что сеть может обладать, например, высокой пропускной способностью, но вносить значительные задержки при передаче каждого пакета. Пример такой ситуации дает канал связи, образованный геостационарным спутником. Пропускная способность этого канала может быть весьма высокой, например 2 Мбит/с, в то время как задержка передачи всегда составляет не менее 0, 24 с, что определяется скоростью распространения сигнала (около 300 000 км/с) и длиной канала (72 000 км). Надежность и безопасность Одной из первоначальных целей создания распределенных систем, к которым относятся и вычислительные сети, являлось достижение большей надежности по сравнению с отдельными вычислительными машинами. Важно различать несколько аспектов надежности. Для технических устройств используются такие показатели надежности, как среднее время наработки на отказ, вероятность отказа, интенсивность отказов. Однако эти показатели пригодны для оценки надежности простых элементов и устройств, которые могут находиться только в двух состояниях - работоспособном или неработоспособном. Сложные системы, состоящие из многих элементов, кроме состояний работоспособности и неработоспособности, могут иметь и другие промежуточные состояния, которые эти характеристики не учитывают. В связи с этим для оценки надежности сложных систем применяется другой набор характеристик. Готовность или коэффициент готовности (availability) означает долю времени, в течение которого система может быть использована. Готовность может быть улучшена путем введения избыточности в структуру системы: ключевые элементы системы должны существовать в нескольких экземплярах, чтобы при отказе одного из них функционирование системы обеспечивали другие. Чтобы систему можно было отнести к высоконадежным, она должна как минимум обладать высокой готовностью, но этого недостаточно. Необходимо обеспечить сохранность данных и защиту их от искажений. Кроме этого, должна поддерживаться согласованность (непротиворечивость) данных, например, если для повышения надежности на нескольких файловых серверах хранится несколько копий данных, то нужно постоянно обеспечивать их идентичность. Так как сеть работает на основе механизма передачи пакетов между конечными узлами, то одной из характерных характеристик надежности является вероятность доставки пакета узлу назначения без искажений. Наряду с этой характеристикой могут использоваться и другие показатели: вероятность потери пакета (по любой из причин - из-за переполнения буфера маршрутизатора, из-за несовпадения контрольной суммы, из-за отсутствия работоспособного пути к узлу назначения и т. д.), вероятность искажения отдельного бита передаваемых данных, отношение потерянных пакетов к доставленным. Другим аспектом общей надежности является безопасность (security), то есть способность системы защитить данные от несанкционированного доступа. В распределенной системе это сделать гораздо сложнее, чем в централизованной. В сетях сообщения передаются по линиям связи, часто проходящим через общедоступные помещения, в которых могут быть установлены средства прослушивания линий. Другим уязвимым местом могут быть оставленные без присмотра персональные компьютеры. Кроме того, всегда имеется потенциальная угроза взлома защиты сети от неавторизованных пользователей, если сеть имеет выходы в глобальные сети общего пользования. Еще одной характеристикой надежности является отказоустойчивость (fault tolerance). В сетях под отказоустойчивостью понимается способность системы скрыть от пользователя отказ отдельных ее элементов. Например, если копии таблицы базы данных хранятся одновременно на нескольких файловых серверах, то пользователи могут просто не заметить отказ одного из них. В отказоустойчивой системе отказ одного из ее элементов приводит к некоторому снижению качества ее работы (деградации), а не к полному останову. Так, при отказе одного из файловых серверов в предыдущем примере увеличивается только время доступа к базе данных из-за уменьшения степени распараллеливания запросов, но в целом система будет продолжать выполнять свои функции. Популярное:
|
Последнее изменение этой страницы: 2016-07-14; Просмотров: 884; Нарушение авторского права страницы