Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Рефлекторная теория и принципы рефлекторной деятельности. Рефлекс.



Нервные центры. Свойства нервных центров.

 

От рецепторов нервные импульсы по афферентным путям поступают в нервные центры. Следует различать анатомическое и физиологическое понимание нервного центра.

Анатомическое определение нервного центра. Нервный центр это совокупность нейронов, расположенных в определенном отделе центральной нервной системы. За счет работы такого нервного центра осуществляется несложная рефлекторная деятельность, например коленный рефлекс. Нервный центр этого рефлекса располагается в поясничном отделе спинного мозга.

Физиологическое определение нервного центра. Нервный центр это сложное функциональное объединение нескольких анатомических нервных центров, расположенных на разных уровнях центральной нервной системы и обусловливающих за счет своей активности сложнейшие рефлекторные акты. Например, в осуществлении пищевых реакций участвуют многие органы (железы, мышцы, кровеносные и лимфатические сосуды и т. л.). Деятельность этих органов регулируется нервными импульсами, поступающими из нервных центров, располагающихся в различных отделах центральной нервной системы. При пищевых реакциях различные анатомические нервные центры функционально объединяются для получения определенного полезного результата.

Физиологические свойства нервных центров. Нервные центры обладают рядом характерных функциональных свойств, зависящих от наличия синапсов и большого количества нейронов, входящих в их состав. Основными свойствами нервных центров являются:

* Одностороннее проведение возбуждения. В центральной нервной системе возбуждение распространяется только в одном направлении от рецепторного нейрона к эффекторному. Это обусловлено наличием в нервных центрах синапсов, в которых передача возбуждения возможна только в одном направлении от нервного окончания, выделяющего медиатор, к постсинаптической мембране.

* Задержка проведения возбуждения в нервных центрах также связана с наличием большого количества синапсов. На выделение медиатора, его диффузию через синаптическую щель, возбуждение постсинаптической мембраны требуется больше времени, чем на распространение возбуждения по нервному волокну.

* Суммация возбуждений в нервных центрах возникает или при нанесении слабых, но повторяющихся (ритмичных) раздражений, или при одновременном действии нескольких подпороговых раздражений. Механизм этого явления связан с накоплением медиатора на постсинаптической мембране и повышением возбудимости клеток нервного центра. Примером суммации возбуждения может служить рефлекс чихания. Этот рефлекс возникает только при длительном раздражении рецепторов слизистой оболочки носа.

* Трансформация ритма возбуждений. Центральная нервная система на любой ритм раздражения, даже медленный, отвечает залпом импульсов. Частота возбуждений, поступающих из нервных центров на периферию к рабочему органу, колеблется от 50 до 200 в 1 с. Этой особенностью центральной нервной системы объясняется то, что все сокращения скелетных мышц в организме являются тетаническими.

* Рефлекторное последействие. Рефлекторные акты заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длительный период. Это явление получило название рефлекторного последействия. Установлены два механизма, обусловливающие последействие. Первый связан с тем, что возбуждение в нервных клетках исчезает не сразу после прекращения раздражения. В течение некоторого времени (сотые доли секунды) нервные клетки продолжают давать ритмические разряды импульсов. Этот механизм может обусловить лишь сравнительно кратковременное последействие. Второй механизм является результатом циркуляции нервных импульсов по замкнутым нейронным цепям нервного центра и обеспечивает более длительное последействие.

Возбуждение одного из нейронов передается на другой, а по ответвлениям его аксона вновь возвращается к первой нервной клетке и т. д. Циркуляция нервных импульсов в нервном центре будет продолжаться до тех пор, пока не наступит утомление одного из синапсов или же активность нейронов не будет приостановлена приходом тормозных импульсов.

* Утомление нервных центров. Нервные центры в отличие от нервных волокон легко утомляемы. При продолжительном раздражении афферентных нервных волокон утомление нервного центра проявляется постепенным снижением, а затем и полным прекращением рефлекторного ответа.

Эта особенность нервных центров доказывается следующим образом. После прекращения мышечного сокращения в ответ на раздражение афферентных нервов начинают раздражать эфферентные волокна, иннервирующие мышцу. В этом случае мышца вновь сокращается. Следовательно, утомление развилось не в эфферентных путях, а в нервном центре.

В многочисленных исследованиях установлено, что наиболее утомляемыми являются воспринимающие нейроны (чувствительные и промежуточные) по сравнению с эфферентными нервными клетками рефлекторной дуги. В настоящее время считают, что утомление нервных центров связано прежде всего с нарушением передачи возбуждения в синапсах. Такое нарушение может быть обусловлено уменьшением запасов медиатора или снижением чувствительности к медиатору постсинаптической мембраны нервной клетки.

 

Спинной мозг.

 

Спинной мозг лежит в позвоночном канале и представляет собой тяж длиной 41 - 45 см (у взрослого), несколько сплющенный спереди назад. Вверху он непосредственно переходит в головной мозг, а внизу заканчивается заострением - мозговым конусом - на уровне II поясничного позвонка.

Характерной чертой организации спинного мозга является периодичность его структуры в форме сегментов, имеющих входы в виде задних корешков, клеточную массу нейронов (серое вещество) и выходы в виде задних корешков. Морфологической границы между сегментами спинного мозга не существует, поэтому деление на сегменты является функциональным. Каждый сегмент через свои корешки иннервирует три метамера тела собственный, половину вышележащего и половину нижележащего, а каждый метамер тела получает иннервацию от трех сегментов спинного мозга. Такое устройство гарантирует осуществление функций спинного мозга при возможных его перерывах и других поражениях.

Распределение функций входящих и выходящих волокон спинного мозга подчиняется определенному закону: все чувствительные (афферентные) волокна входят в спинной мозг через его задние корешки, а двигательные и вегетативные (эфферентные) выходят через передние корешки. Этот закон известен как закон Белла-Мажанди.

В задних корешках волокон гораздо больше, чем в передних (их соотношение у человека примерно 5: 1) т. е. при большом разнообразии поступающей информации организм использует незначительное количество исполнительных приборов. По задним корешкам в спинной мозг поступают импульсы от рецепторов скелетных мышц, сухожилий, кожи, сосудов, внутренних органов. Передние корешки содержат волокна к скелетным мышцам и вегетативным ганглиям.

Задние корешки образованы волокнами одного из отростков афферентных нейронов, тела которых расположены вне центральной нервной системы – в межпозвоночных ганглиях, а волокна другого отростка связаны с рецептором. Общее число афферентных волокон у человека достигает примерно 1 млн. Они различаются по диаметру. Наиболее толстые идут от рецепторов мышц и сухожилий, средние по толщине—от тактильных рецепторов кожи, от части мышечных рецепторов и от рецепторов внутренних органов (мочевого пузыря, желудка, кишечника и др.), наиболее тонкие миелинизированные и немиелинизированные волокна—от болевых рецепторов и терморецепторов. Одна часть афферентных волокон заканчивается на нейронах спинного мозга, другая часть направляется к нейронам продолговатого мозга, образуя спинно-бульбарный путь.

Передние корешки состоят из отростков мотонейронов передних рогов спинного мозга и нейронов боковых рогов. Волокна первых направляются к скелетной мускулатуре, а волокна вторых переключаются в вегетативных ганглиях на другие нейроны и иннервируют внутренние органы.

Спинной мозг имеет два утолщения: шейное и поясничное, соответствующие местам выхода из него нервов, идущих к верхней и нижней конечностям. Передней срединной щелью и задней срединной бороздкой спинной мозг делится на две симметричные половины, каждая в свою очередь имеет по две слабовыраженные продольные борозды, из которых выходят передние и задние корешки - спинномозговые нервы. Эти борозды разделяют каждую половину на три продольных тяжа - канатика: передний, боковой и задний. В поясничном отделе корешки идут параллельно концевой нити и образуют пучок, носящий название конского хвоста.

Внутри спинной мозг состоит из серого и белого вещества. Серое вещество заложено внутри и со всех сторон окружено белым. В каждой из половин спинного мозга оно образует два неправильной формы вертикальных тяжа с передними и задними выступами - столбами, соединенных перемычкой - центральным промежуточным веществом, в середине которого заложен центральный канал, проходящий вдоль спинного мозга и содержащий спинномозговую жидкость. В грудном и верхнем поясничном отделах имеются также боковые выступы серого вещества. Таким образом, в спинном мозге различают три парных столба серого вещества: передний, боковой и задний, которые на поперечном разрезе спинного мозга носят название переднего, бокового и заднего рогов.

Передний рог имеет округлую или четырехугольную форму и содержит клетки, дающие начало передним (двигательным) корешкам спинного мозга.

Задний рог уже и длиннее и включает клетки, к которым подходят чувствительные волокна задних корешков.

Боковой рог образует небольшой треугольной формы выступ, состоящий из клеток, относящихся к вегетативной части нервной системы.

Белое вещество спинного мозга составляет передний, боковой и задний канатики и образовано преимущественно продольно идущими нервными волокнами, объединенными в пучки - проводящие пути.

Среди них выделяют три основных вида:

· волокна, соединяющие участки спинного мозга на различных уровнях;

· двигательные (нисходящие) волокна, идущие из головного мозга в спинной на соединение с клетками, дающими начало передним двигательным корешкам;

· чувствительные (восходящие) волокна, которые частично являются продолжением волокон задних корешков, частично отростками клеток спинного мозга и восходят кверху к головному мозгу.

От спинного мозга, образуясь из передних и задних корешков, отходит 31 пара смешанных спинномозговых нервов: 8 пар шейных, 12 пар грудных, 5 пар поясничных, 5 пар крестцовых и 1 пара копчиковых. Участок спинного мозга, соответствующий отхождению пары спинномозговых нерввов, называют сегментом спинного мозга. В спинном мозге выделяют 31 сегмент.

Спинной мозг выполняет две функции: рефлекторную и проводниковую.

Рефлекторные центры спинного мозга. Объем функций, осуществляемых спинным мозгом, чрезвычайно велик. В шейном отделе спинного мозга находятся центр диафрагмального нерва и центр сужения зрачка, в шейном и грудном отделах - центры мышц верхних конечностей, мышц груди, спины и живота, в поясничном отделе - центры мышц нижних конечностей, в крестцовом отделе - центры мочеиспускания, дефекации и половой деятельности, в боковых рогах грудного и поясничного отделов спинного мозга - центры потоотделения и спинальные сосудодвигательные центры.

В естественных условиях эти рефлексы всегда испытывают влияние высших отделов головного мозга. Степень проявления рефлексов зависит от того, сохраняются ли связи структур спинного мозга со структурами головного мозга. После децеребрации (удаления головного мозга) или спинализации (отделения спинного мозга от головного посредством перерезки) исчезают многие сложные формы активности, создаваемые спинным мозгом. При этом определенное значение принадлежит уровню организации подопытного животного. Например, спинальная лягушка, может сидеть и вырываться, когда ее схватывают, собака же сама не может ни стоять, ни ходить. Причина этого в разобщении спинного мозга и вышележащих структур нарушает. При этом, в частности, исчезают периодические разряды дыхательных мышц, обеспечивающие дыхательные движения, пропадают тонические разряды симпатических нейронов, поддерживающих сосудистый тонус и соответственно артериальное давление.

В зависимости от числа нейронов, участвующих в проведении возбуждения, рефлекторные дуги спинного мозга делятся на моносинаптические и полисинаптические. За исключением моносинаптических рефлексов растяжения рефлекторные дуги всех остальных спиномозговых рефлексов являются полисинаптическими.

К числу рефлексов спинного мозга относятся защитные рефлексы, рефлексы на растяжение, мышц-антагонистов, висцеромоторные, вегетативные рефлексы. Эта классификация весьма условна, она указывает только на многообразие рефлекторных ответов. Даже у спинального животного трудно встретить рефлексы, которые относились бы только к одной из названных групп.

Защитные рефлексы запускаются, как правило, с рецепторов кожи, хотя характер ответной реакции сильно зависит от силы и вида раздражителя. Чаще всего конечная реакция выглядит в виде усиления сокращения мышц сгибателей.

Рефлексы растяжения проявляются укорочением мышцы в ответ на ее растяжение.

Основными рецепторами в этом случае служат нервно-мышечные веретена, афферентным звеном чувствительные волокна соматических нервов и дорсальных корешков спинного мозга. Эти рефлекторные дуги чаще всего замыкаются в спинном мозге. Начало и конец рефлекторной дуги связаны с мышцей. Рефлексы наиболее выражены в мышцах-разгибателях. Для того. чтобы организм мог противостоять силе земного притяжения, эти мышцы должны находиться в состоянии тонического напряжения. физиологическое значение этих рефлексов состоит в том, что они участвуют в сохранении статики и положения тела, регулируя степень сокращения мышцы в соответствии с падающими на нее раздражениями.

Рефлексы мышц-антагонистов лежат в основе локомоторных актов и характеризуются тем, что при возбуждении мотонейронов сгибателей одновременно происходит торможение мотонейронов мыщц-разгибателей. При этом в конечности другой стороны наблюдаются обратные явления. В целом это создает правильное чередование противоположных по функциональному значению мышечных сокращений. Механизм, обусловливающий такое чередование активности различных двигательных ядер, например при ходьбе, локализуется в интернейронном аппарате спинного мозга. Вместе с тем для его активации необходимо поступление тонического нисходящего сигнала из двигательных центров головного мозга.

Висцеромоторные рефлексы возникают при возбуждении афферентных волокон внутренних органов и характеризуются появлением двигательных реакций мышц грудной и брюшной стенки, мышц-разгибателей спины. Возникновение этих рефлексов связано с существованием конвергенции висцеральных и соматических аффферентных волокон к одним и тем же интернейронам спинного мозга.

Вегетативные рефлексы заключаются, во-первых, в появлении полисинаптических разрядов в преганглионарных симпатических волокнах в ответ на возбуждение симпатических и соматических чувствительных клеток, во-вторых, в возникновении рефлекторных реакций парасимпатических нейронов в ответ на раздражение чувствительных путей.

Наряду с выполнением собственных рефлекторных реакций нейронные структуры спинного мозга служат аппаратом для реализации большого числа сложных процессов, осуществляемых различными отделами головного мозга.

Проводниковая функция спинного мозга. Через спинной мозг проходят восходящие и нисходящие нервные пути.

Восходящие нервные пути передают информацию от тактильных, болевых, температурных рецепторов кожи и от проприорецепторов мышц через нейроны спинного мозга в вышележащие отделы центральной нервной системы, к мозжечку и горе головного мозга.

Нисходящие нервные пути (пирамидный и экстрапирамидный) связывают кору головного мозга, подкорковые ядра и образования ствола мозга с мотонейронами спинного мозга. Они обеспечивают влияние высших отделов ЦНС на деятельность скелетных мышц.

Продолговатый мозг и мост

Непосредственным продолжением спинного мозга у всех позвоночных животных и человека является продолговатый мозг. Продолговатый мозг и варолиев мост (мост мозга) объединяют под общим названием заднего мозга.

Функции продолговатого мозга были изучены на бульбарных животных, у которых поперечным разрезом продолговатый мозг отделен от среднего. Следовательно, жизнь бульбарных животных осуществляется за счет деятельности спинного и продолговатого мозга. У таких животных отсутствуют произвольные движения, отмечается потеря всех видов чувствительности, нарушается регуляция температуры тела (теплокровное животное превращается в холоднокровное). У бульбарных животных сохраняются рефлекторные реакции организма и осуществляется регуляция функций внутренних органов.

В продолговатом мозге по сравнению со спинным мозгом нет четкого сегментарного распределения серого и белого вещества. Скопление нервных клеток приводит к образованию ядер, являющихся центрами более или менее сложных рефлексов. Из 12 пар черепных нервов, связывающих головной мозг с периферией организма - его рецепторами и эффекторами, восемь пар (V -ХII) берут свое начало в заднем мозге. В продолговатом мозгу и мосте расположены ядра следующих черепных нервов:

пара V черепных нервов – тройничный нерв, имеет двигательное и чувствительное ядра. Двигательное ядро расположено в мосту, иннервирует жевательные мышцы и вызывает движения нижней челюсти а также напрягает мягкое небо и барабанную перепонку. Чувствительные ядра (среднемозговое, мостовое, спинальное) по­лучают от кожи, слизистых оболочек, орга­нов лица и головы тактильную, температур­ную, висцеральную, проприоцептивную, бо­левую импульсацию, входят в проводнико­вый отдел соответствующих анализаторов и участвуют в различных рефлексах (например, жевательном, глотательном, чихательном).

пара VI черепных нервов – отводящий нерв; ядро отводящего нерва расположено в мосту. Иннервирует наруж­ную прямую мышцу глаза, вызывает поворот его кнаружи.

пара VII черепных нервов – лицевой нерв; ядра лицевого нерва нахо­дятся в мосту. Двигательное ядро вызывает сокращения мимической и вспомогательной жевательной мускулатуры, регулирует пере­дачу звуковых колебаний в среднем ухе в ре­зультате сокращения стременной мышцы. Чувствительное ядро одиночного пути, иннервируя вкусовые луковицы передних 2/3 языка, анализирует вкусовую чувствитель­ность, участвует в моторных и секреторных пищеварительных рефлексах. Верхнее слюно­отделительное (парасимпатическое) ядро стимулирует выделение секретов подъязыч­ной, подчелюстной слюнных и слезной желез.

пара VIII черепных нервовпреддверно-улитковый нерв; его чувствительные ядра расположены в продолговатом мозге. Вестибулярные ядра, иннервируя рецепторы вестибулярного аппарата, участвуют в регуляции позы и равновесия тела (статические и статокинетические рефлексы), в вестибулоглазных и вестибуловегетативных рефлексах, входят в проводниковый отдел вестибулярного анализатора. Улитковые ядра, иннервирующие слуховые рецепторы, участвуют в слуховом ориентировочном рефлексе, входят в проводниковый отдел слухового анализатора.

пара IX — языкоглоточный нерв; ядра языкоглоточного нерва расположены в продолгова­том мозге. Двойное (двигательное) ядро вызы­вает поднимание глотки и гортани, опуска­ние мягкого неба и надгортанника при глота­тельном рефлексе. Чувствительное ядро оди­ночного пути получает вкусовую, тактильную, температурную, болевую и интероцептивную чувствительность от слизистой оболочки глотки, задней трети языка, барабанной по­лости и каротидного тельца, входит в состав соответствующих анализаторов, участвует в рефлексах жевания, глотания, в секреторных и моторных пищеварительных рефлексах, в сосудистых и сердечных рефлексах (из каро­тидного тельца). Нижнее слюноотделительное (парасимпатическое) ядро стимулирует секрецию околоушной слюнной железы.

пара X — блуждающий нерв; ядра блуждающего нерва расположены в продолговатом мозге. Двойное (двигательное) ядро, иннервируя мышцы неба, глотки, гортани, участвует в рефлекса глотания, рвоты, чиханья, кашля, в формировании голоса. Чувствительное ядро одиночного пути, иннервируя слизистую оболочку неба, корня языка, дыхательных путей, аортальное тельце, органы шеи, грудной, брюшной полостей, участвует в качестве афферентного звена в глотательном, жевательном дыхательных, висцеральных рефлексах. Оно входит в проводниковый отдел интероцептивного, вкусового, тактильного, температурного и болевого анализаторов. Заднее (парасимпатическое) ядро, иннервируя сердце, гладкие мышцы и железы органов шеи грудной и брюшной полостей, участвует сердечных, легочных, бронхиальных, пищи верительных рефлексах.

пара XI — добавочный нерв; двигательное ядро добавочного нерв расположено в продолговатом и спинном мозге. Иннервируя грудино-ключично-сосцевидную и трапециевидную мышцы, оно вызывает наклон головы набок с поворотом лица в противоположную сторону, поднимание плечевого пояса вверх приведение лопаток к позвоночнику.

пара XII — подъязычный нерв; двигательное ядро подъязычного нерва расположено в продолговатом мозге; иннервируя мышцы языка, вызывает его движение в рефлексах жевания, сосания, глотания, в осуществлении речи.

Таким образом, с участием ядер черепных нервов реализуется сенсорная и рефлекторная (соматическая и вегетативная) функции ствола мозга.

Сенсорные функции. Продолговатый мозг регулирует ряд сенсорных функций:

· рецепцию кожной чувствительности лица — в сенсорном ядре тройничного нерва;

· первичный анализ рецепции вкуса — в ядре языкоглоточного нерва;

· рецепцию слуховых раздражений — в ядре улиткового нерва;

· рецепцию вестибулярных раздражений — в верхнем вестибулярном ядре.

В задневерхних отделах продолговатого мозга проходят пути кожной, глубокой, висцеральной чувствительности, часть из которых переключается здесь на второй нейрон (тонкое и клиновидное ядра). На уровне продолговатого мозга перечисленные сенсорные функции реализуют первичный анализ силы и качества раздражения, далее обработанная информация передается в подкорковые структуры для определения биологической значимости данного раздражения.

Проводниковые функции. Через продолговатый мозг проходят все восходящие и нисходящие пути спинного мозга: спинно-таламический, кортикоспинальный, руброспинальный. В нем берут начало вестибулоспинальный, оливоспинальный и ретикулоспинальный тракты, обеспечивающие тонус и координацию мышечных реакций. В продолговатом мозге заканчиваются пути из коры большого мозга — корковоретикулярные пути. Здесь заканчиваются восходящие пути проприоцептивной чувствительности из спинного мозга: тонкого и клиновидного. Такие образования головного мозга, как мост, средний мозг, мозжечок, таламус, гипоталамус и кора большого мозга, имеют двусторонние связи с продолговатым мозгом.

Через восходящие пути и черепные нервы продолговатый мозг получает импульсы от рецепторов мышц лица, шеи, конечностей и туловища, от кожи лица, слизистых оболочек глаз, носовой и ротовой полости, от рецепторов слуха, вестибулярного аппарата, рецепторов гортани, трахеи, легких, интерорецепторов пищеварительного аппарата и сердечно-сосудистой системы.

Наличие этих связей свидетельствует об участии продолговатого мозга в регуляции тонуса скелетной мускулатуры, вегетативных и высших интегративных функций, анализе сенсорных раздражений.

Рефлекторные функции. В продолговатом мозге находятся центры как относительно простых, так и более сложных рефлексов. За счет продолговатого мозга осуществляются:

· защитные рефлексы (мигание, слезоотделение, чиханье, кашлевой и рефлекс акта рвоты);

Эти рефлексы реализуются благодаря тому, что информация о раздражении рецепторов слизистой оболочки глаза, полости рта, гортани, носоглотки через чувствительные ветви тройничного и языкоглоточного нервов попадает в ядра продолговатого мозга. Отсюда идет команда к двигательным ядрам тройничного, блуждающего, лицевого, языкоглоточного, добавочного или подъязычного нервов, в результате реализуется тот или иной защитный рефлекс.

Точно так же за счет последовательного включения мышечных групп головы, шеи, грудной клетки и диафрагмы организуются рефлексы пищевого поведения: сосания, жевания, глотания.

· установочные рефлексы, обеспечивающие тонус мускулатуры, необходимый для поддержания позы и осуществления рабочих актов;

Эти рефлексы формируются за счет афферентации от рецепторов преддверия улитки и полукружных каналов в верхнее вестибулярное ядро; отсюда переработанная информация оценки необходимости изменения позы посылается к латеральному и медиальному вестибулярным ядрам. Эти ядра участвуют в определении того, какие мышечные системы, сегменты спинного мозга должны принять участие в изменении позы, поэтому от нейронов медиального и латерального ядра по вестибулоспинальному пути сигнал поступает к передним рогам соответствующих сегментов спинного мозга, иннервирующих мышцы, участие которых в изменении позы в данный момент необходимо.

· лабиринтные рефлексы, способствующие правильному распределению мышечного тонуса между отдельными группами мышц при изменении позы тела;

Изменение позы осуществляется за счет статических и статокинетических рефлексов. Статические рефлексы регулируют тонус скелетных мышц с целью удержания определенного положения тела. Статокинетические рефлексы продолговатого мозга обеспечивают перераспределение тонуса мышц туловища для организации позы соответствующей моменту прямолинейного или вращательного движения..

· рефлексы, связанные с функциями систем дыхания, кровообращения, пищеварения.

Большая часть автономных рефлексов продолговатого мозга реализуется через расположенные в нем ядра блуждающего нерва, которые получают информацию о состоянии деятельности сердца, сосудов, пищеварительного тракта, легких, пищеварительных желез и др. В ответ на эту информацию ядра организуют двигательную и секреторную реакции названных органов.

Возбуждение ядер блуждающего нерва вызывает усиление сокращения гладких мышц желудка, кишечника, желчного пузыря и одновременно расслабление сфинктеров этих органов. При этом замедляется и ослабляется работа сердца, сужается просвет бронхов.

Деятельность ядер блуждающего нерва проявляется также в усилении секреции бронхиальных, желудочных, кишечных желез, в возбуждении поджелудочной железы, секреторных клеток печени.

В продолговатом мозге локализуется центр слюноотделения, парасимпатическая часть которого обеспечивает усиление общей секреции, а симпатическая — белковой секреции слюнных желез.

Рефлекторные центры продолговатого мозга. В продолговатом мозге располагается ряд жизненно важных центров. В структуре ретикулярной формации продолговатого мозга расположены дыхательный и сосудодвигательный центры. Особенность этих центров в том, что их нейроны способны возбуждаться рефлекторно и под действием химических раздражителей.

Дыхательный центр локализуется в медиальной части ретикулярной формации каждой симметричной половины продолговатого мозга и разделен на две части, вдоха и выдоха.

Сосудодвигательный центр (регуляции сосудистого тонуса) функционирует совместно с вышележащими структурами мозга и прежде всего с гипоталамусом. Возбуждение сосудодвигательного центра всегда изменяет ритм дыхания, тонус бронхов, мышц кишечника, мочевого пузыря, цилиарной мышцы и др.

В средних отделах ретикулярной формации находятся нейроны, образующие ретикулоспинальный путь, оказывающий тормозное влияние на мотонейроны спинного мозга. На дне IV желудочка расположены нейроны «голубого пятна». Их медиатором является норадреналин. Эти нейроны вызывают активацию ретикулоспинального пути в фазу «быстрого» сна, что приводит к торможению спинальных рефлексов и снижению мышечного тонуса.

Средний мозг.

К образованиям среднего мозга относят ножки мозга, ядра III (глазодвигательный) и IV (блоковый) пар черепных нервов, четверохолмие, красные ядра и черное вещество (черную субстанцию). В ножках мозга проходят восходящие и нисходящие нервные пути.

В строении среднего мозга полностью утрачиваются сегментарные признаки. В среднем мозге клеточные элементы образуют сложные скопления в виде ядер. Ядерные образования относятся непосредственно к среднему мозгу, а также к входящей в его состав ретикулярной формации.

Передние бугры четверохолмия получают импульсы от сетчатой оболочки глаз. В ответ на эти сигналы осуществляется регуляция просвета зрачка и аккомодация глаза.

Задние бугры четверохолмия получают импульсы от ядер слуховых нервов, расположенных в продолговатом мозге. Благодаря этому происходит рефлекторная регуляция тонуса мышц среднего уха, а у животных - поворот ушной раковины к источнику звука. Таким образом, при участии передних и задних бугров четверохолмия осуществляются установочные, ориентировочные рефлекторные реакции на световые и звуковые раздражения (движения глаз, поворот головы и даже туловища в сторону светового или звукового раздражителя). При разрушении ядер четверохолмия зрение и слух сохраняются, но отсутствуют ориентировочные реакции на свет и звук.

С деятельностью бугров четверохолмия тесно связана функция ядер III и IV пар черепных нервов, возбуждение которых определяет движение глаз вверх, вниз, в стороны, а также сведение (конвергенция) и разведение глазных осей при переносе взора с удаленных предметов на близкие и обратно.

Красные ядра участвуют в регуляции мышечного тонуса и в проявлении установочных рефлексов, обеспечивающих сохранение правильного положения тела в пространстве. При отделении заднего мозга от среднего тонус мышц-разгибателей повышается, конечности животного напрягаются и вытягиваются, голова запрокидывается. Следовательно, у здорового животного и человека красные ядра несколько притормаживают тонус мышц-разгибателей.

Черное вещество также регулирует мышечный тонус и поддержание позы, участвует в регуляции актов жевания, глотания, кровяного давления и дыхания, т. е. деятельность черного вещества, как и красных ядер, тесно связана с работой продолговатого мозга.

Таким образом, средний мозг регулирует тонус мышц, соответствующим образом его распределяет, что является необходимым условием координированных движений; Средний мозг регулирует ряд вегетативных функций организма (жевание, глотание, кровяное давление, дыхание). За счет среднего мозга расширяется, становятся многообразнее рефлекторная деятельность организма (ориентировочные рефлексы на звуковые и зрительные раздражения).

Промежуточный мозг.

Промежуточный мозг - часть переднего отдела ствола мозга. Основными образованиями промежуточного мозга являются зрительные бугры (таламус) и подбугорная область (гипоталамус).

Зрительные бугры -массивное парное образование, они занимают основную массу промежуточного мозга. Наибольших размеров и наивысшей сложности строения зрительные бугры достигают у человека.

Зрительные бугры являются центром всех афферентных импульсов. Через зрительные бугры к коре головного мозга поступает информация от всех рецепторов нашего организма, за исключением обонятельных. Кроме того, от зрительных бугров нервные импульсы передаются к различным образованиям ствола мозга. В зрительных буграх обнаружено большое количество ядерных образований. Функционально их можно разделить на две группы: специфические и неспецифические ядра.

Специфические ядра получают информацию от рецепторов, перерабатывают ее и передают в определенные области коры головного мозга, где возникают соответствующие ощущения (зрительные, слуховые и т. д.). Неспецифические ядра не имеют прямой связи с рецепторами организма. Они получают импульсы от рецепторов через большое количество переключений (синапсов). Импульсы от этих образований через подкорковые ядра поступают к множеству нейронов, расположенных в различных областях коры головного мозга, вызывая повышение их возбудимости.

При повреждении зрительных бугров у человека наблюдается полная потеря чувствительности или ее снижение на противоположной стороне, выпадает сокращение мимической мускулатуры, которое сопровождает эмоции, также могут возникать расстройства сна, понижение слуха, зрения и т. д.

Гипоталамическая (подбугорная) область участвует в регуляции различных видов обмена веществ (белков, жиров, углеводов, солей, воды), регулирует теплообразование и теплоотдачу, состояние сна и бодрствования; В ядрах гипоталамуса происходит образование ряда гормонов, которые затем депонируются в задней доле гипофиза.. Передние отделы гипоталамуса являются высшими центрами парасимпатической нервной системы, задние - симпатической нервной системы. Гипоталамус участвует в регуляции многих вегетативных функций организма.

 

Базальные ядра.

К подкорковым, или базальным, ядрам относятся три парных образования: хвостатое ядро, скорлупа и бледный шар. Базальные ядра расположены внутри больших полушарий, в нижней их части, между лобными долями и промежуточным мозгом. Развитие и клеточное строение у хвостатого ядра и скорлупы одинаковы, поэтому их рассматривают как единое образование - полосатое тело.

Полосатое тело ведает сложными двигательными функциями, участвует в осуществлении безусловнорефлекторных реакций цепного характера - бег, плавание, прыжки. Эту функцию полосатое тело осуществляет через бледный шар, притормаживая его деятельность. Кроме того, полосатое тело через гипоталамус регулирует вегетативные функции организма, а также вместе с ядрами промежуточного мозга обеспечивает осуществление сложных безусловных рефлексов цепного характера - инстинктов.

Бледный шар является центром сложных двигательных рефлекторных реакций (ходьба, бег), формирует сложные мимические реакции, участвует в обеспечении правильного. распределения мышечного тонуса. Свои функции бледный шар осуществляет опосредованно через образования среднего мозга (красные ядра и черное вещество). При раздражении бледного шара наблюдается общее сокращение скелетных мышц противоположной стороны тела. При поражении бледного шара движения теряют свою плавность, становятся неуклюжими, скованными.

Следовательно, деятельность подкорковых ядер не ограничивается их участием в формировании сложных двигательных актов. Они благодаря связям с гипоталамусом участвуют в регуляции обмена веществ и функций внутренних органов.

Таким образом, базальные ядра являются высшими подкорковыми центрами объединения (интеграции) функций организма. У человека и высших позвоночных животных деятельность подкорковых ядер контролируется корой головного мозга.

 

Мозжечок


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-14; Просмотров: 694; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.051 с.)
Главная | Случайная страница | Обратная связь