Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Воздействие электромагнитными волнами
Физиотерапевтические методы, основанные на применении электромагнитных волн СВЧ-диапазона, в зависимости от длины волны получили два названия: микроволновая терапия (частота 2375 МГц, длина волны 12, 6 см) и ДЦВ-терапия, т. е. терапия дециметровых волн (частота 460 МГц, длина волны 65, 2 см). Наиболее разработана в настоящее время теория о тепловом действии СВЧ-полей на биологические объекты. Электромагнитная волна поляризует молекулы вещества и периодически переориентирует их как электрические диполи. Кроме того, электромагнитная волна воздействует на ионы биологических систем и вызывает переменный ток проводимости. Таким образом, в диэлектрике, находящемся в электромагнитном поле, происходит как изменение поляризации диэлектрика, так и протекание токов проводимости. Все это приводит к нагреванию вещества. Большое значение имеют диэлектрические потери, обусловленные переориентацией молекул воды (g-дисперсия, см. § 14.4). В связи с этим максимальное поглощение энергии микроволн происходит в таких тканях, как мышцы и кровь, а в костной и жировой ткани воды меньше, они меньше и нагреваются. На границе сред с разными коэффициентами поглощения электромагнитных волн, например на границе тканей с высоким и низким содержанием воды, могут возникнуть стоячие волны, обусловливая местный перегрев тканей. Наиболее подвержены перегреву ткани с недостаточным кровоснабжением и, следовательно, плохой терморегуляцией, например хрусталик глаза, стекловидное тело и др. Электромагнитные волны могут влиять на биологические процессы, разрывая водородные связи и влияя на ориентацию макромолекул ДНК и РНК. При попадании электромагнитной волны на участок тела происходит ее частичное отражение от поверхности кожи. Степень отражения зависит от различия диэлектрических проницаемостей воздуха и биологических тканей. Если облучение электромагнитными волнами осуществляется дистанционно (на расстоянии), то может отражаться до 75% энергии электромагнитных волн. В этом случае невозможно по мощности, генерируемой излучателем, судить об энергии, поглощаемой пациентом в единицу времени. При контактном облучении электромагнитными волнами (излучатель соприкасается с облучаемой поверхностью) генерируемая мощность соответствует мощности, воспринимаемой тканями организма. Глубина проникновения электромагнитных волн в биологические ткани зависит от способности этих тканей поглощать энергию волн, которая, в свою очередь, определяется как строением тканей (главным образом содержанием воды), так и частотой электромагнитных волн. Так, сантиметровые электромагнитные волны, используемые в физиотерапии, проникают в мышцы, кожу, биологические жидкости на глубину около 2 см, а в жир, кости — около 10 см. Для дециметровых волн эти показатели приблизительно в 2 раза выше. Учитывая сложный состав тканей, условно считают, что при микроволновой терапии глубина проникновения электромагнитных волн равна 3—5 см от поверхности тела, а при ДЦВ-терапии — до 9 см.
Физиотерапевтические аппараты высокочастотнойтерапии. Аппараты индуктотермии и УВЧ-терапии. Терапевтический контур.
К физиотерапевтическим аппаратам высокочастотной терапии относятся аппараты электрохирургии (рассмотрим их ниже), диатермии, местной дарсонвализации, индуктотермии, УВЧ-терапии, микроволновой терапии (также будут рассмотрены ниже). Общая схема аппаратов индуктотермии и УВЧ-терапии приведена на рисунке.
В аппарате УВЧ-терапии дискообразные электроды, подводимые к больному, входят в состав контура пациента, называемого терапевтическим контуром. Для безопасности больного терапевтический контур индуктивно связан с контуром генератора, так как индуктивная связь исключает возможность случайного попадания больного под высокое напряжение, которое практически всегда имеется в генераторах колебаний. Терапевтический контур применяют и в других генераторах, используемых для лечения.
Вопрос 3. 15 минут.
Генераторы синусоидальных колебаний С самовозбуждением Для возбуждения незатухающих электрических колебаний применяют автоколебательные системы (работающие за счет энергии источника постоянного или выпрямленного напряжения), называемые генераторами. Рассмотрим ламповый генератор:
Существо протекающих в генераторе процессов заключается в том, что колебательный контур воздействует на анодную цепь лампы, которая в свою очередь оказывает действие на контур. Такой способ получения колебаний называется обратной связью. Соответственно катушку L называют катушкой обратной связи. Источником энергии является анодная батарея. В качестве " клапана", пропускающего в контур энергию в нужный момент, используют триод либо транзистор. В момент включения схемы в колебательном контуре возникают малые случайные колебания. За счет индуктивной связи эти колебания передаются на сетку триода и усиливаются. Усиленные лампой колебания через анодную цепь попадают в контур в резонанс с теми, которые там уже существуют и амплитуда колебаний возрастает. Так будет лишь в случае определенного фазового соотношения между колебаниями в контуре и изменением напряжения сетки. Обратная связь должна быть положительной. Схема генерирует колебания, частота которых равна частоте собственных колебаний контура Lк Cк. Изменять эту частоту можно, меняя параметры контура - C и L. Удобнее Cк. Элементы Rc Cc служат для создания на сетке напряжения смещения в цепях правильного режима работы лампы.
Рассмотрим работу генератора при установившихся колебаниях, когда активное сопротивление колебательного контура = 0, то есть контур идеальный. В идеальном колебательном контуре при возбужденных колебаниях на пластинах конденсатора образуется переменное напряжение Uк, поддерживающее ток Jк колебательного контура (рисунок). Ток Jк запаздывающий по фазе относительно напряжения Uк на L п/2, наводит в катушке связи э.д.с. индукции Eк, которая в свою очередь запаздывает по фазе относительно тока Jк еще на L п/2 и, следовательно, по отношению к напряжению Uк находится в противофазе (пунктир). Однако вследствие обусловленного выше порядка подключения концов катушки Loc к сетке и катоду лампы фаза э.д.с. индукции изменяется на обратную и потенциал Uс на сетке лампы оказывается в фазе с напряжением Uк. Потенциал Uс на сетке вызывает соответствующие пульсации анодного тока, который может рассматриваться как состоящий из постоянной Jао и Jа~ переменной составляющих. Последняя имеет такую же частоту, как и напряжение Uк и находится с ним в фазе.
Подобный генератор может быть выполнен на полупроводниковом триоде. Принцип его работы аналогичен.
На практике колебательный контур включается в цепь сетки. Активное сопротивление нагрузки вместе с катушкой связи в генераторе включено в анодную цепь лампы (рисунок).
Потенциал изменяется в фазе с напряжением Uс конденсатора контура. Анодный ток проходит по катушке K, которая связана индуктивно, с одной стороны, с катушкой L колебательного контура (для поддержания колебаний в нем), с другой стороны, с катушкой Lн нагрузочного контура, на сопротивлении Rн которого происходят основные потери энергии. Эти потери компенсируются непосредственно переменной составляющей анодного тока, которая питает этот контур путем индукции между катушками K и Lн.
Двухтактный генератор
Если требуется значительная мощность колебаний, то применяется двухтактный генератор (рисунок).
Катушки К1 и К2 связи соединены вместе, и их средняя точка через сопротивление Rс (смещения) подключена к общей точке катодов ламп. Активное сопротивление контура Rк1 и Rк2 считаем включенными последовательно с каждой из половин катушки L контура. Принципиальная схема двухтактного генератора напоминает схему двухтактного усилителя. Самовозбуждение колебаний в генераторе основано на практически неизбежной несимметрии электрических параметров схемы, в связи с чем в начальный момент при включении источника питания токи, протекающие по каждой из половин катушки контура, не будут абсолютно одинаковы. Это обусловливает образование на концах катушки L хотя бы небольшой разности потенциалов, которая послужит для начальной зарядки конденсатора C контура. Затем в процессе колебаний это напряжение быстро возрастает до нормальной величины. Рассмотрим рабочий процесс при уже возбужденных колебаниях. Ток Jк колебательного процесса (реактивная составляющая тока в контуре) через катушки связи индуктирует на сетках ламп переменные потенциалы Uс1 и Uс2, которые обусловливают образование переменных составляющих Jа1~ и Jа2~ анодных токов ламп (активная составляющая тока в контуре). Колебания потенциалов Uс1 и Uс2, а следовательно, токов Jа1~, Jа2~ и напряжений Ur1~, Ur2~ на сопротивлениях Rк1 и Rк2 находятся в противофазе, причем токи Jа1~ и Jа2~ протекают по сопротивлению Rк1 и Rк2 в противоположных направлениях, поэтому напряжения Ur1 и Ur2 образуют совместно общее напряжение Uк, которое в данном случае и поддерживает колебания в контуре. Токи Jа1~ и Jа2~ компенсируют потери энергии на активном сопротивлении контура. В результате в колебательном контуре реализуется удвоенная мощность сравнительно с однотактным генератором на такой же лампе.
Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 584; Нарушение авторского права страницы