Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Всегда ли легко задуть свечку?
Сейчас мы убедились, как могущественно бывает иногда наше дуновение. Но вот обратный пример, когда дуновение наше оказывается гораздо слабее, чем мы ожидаем. Пробовали ли вы задувать свечу через воронку? Вероятно, нет. Можно поэтому заранее сказать, что если проделаете такой опыт, то будете изумлены: задуть свечу через воронку вовсе не так легко. Вы можете сколько угодно дуть на свечку в узкий конец воронки, – пламя не шелохнется. Мало того: если вы поднесете воронку близко к свече, то пламя, вместо того чтобы отклониться от воронки, пригнется к ней, навстречу воздушной струе (рис. 62). Секрет искусства задувать свечу через воронку все же довольно прост: надо держать воронку так, чтобы пламя приходилось не на продолжении оси воронки, а на продолжении ее широкого края. Тогда свеча гаснет даже от умеренного дуновения.
Рис. 62
Чем же объясняются эти загадочные явления? Тем, что воздушная струя, вытекая из узкой части воронки, не идет далее по прямой линии, а растекается вдоль стенок воронки. Вследствие этого воздух в осевой части воронки немного разрежается, оттого здесь и устанавливается обратный воздушный ток. Теперь понятно, почему пламя свечи, помещенное против этого места воронки, наклоняется навстречу ей, а помещенное против края – отклоняется вперед и гаснет. Читателям, вероятно, будет интересно узнать, что описанный здесь, опыт натолкнул советского изобретателя О.Т. Синицына на мысль внести существенное усовершенствование в устройство важного физического прибора – Круксовой трубки. «Решений задачи, – писал он мне, – есть несколько, но применение воронок пока наилучшее. С опытом, показывающим, что воздух растекается по воронке, а не идет прямо, я познакомился из книги, написанной вами. Опыт с воронкой я проделал не раз и убедился, что он может помочь решить задачу соединения вакуума (пустого пространства) с окружающей средой». Вот поучительный пример того, как иногда несложный опыт открывает путь к ценным изобретениям.
Почему не выливается?
Опыт, о котором сейчас будет рассказано, – один из самых легких для исполнения. Наполните стакан водой, покройте его почтовой карточкой и, слегка придерживая ее пальцами, переверните вверх дном. Теперь можете руку убрать: бумажка не отпадает, вода не выльется, если только вы не держите стакан косо. В таком виде вы можете переносить стакан с места на место – но с большим удобством, чем при обычных условиях: вода не расплескивается. При случае вам нетрудно будет изумить товарища, принеся ему в ответ на просьбу дать напиться воду в опрокинутом стакане. Что же удерживает карточку от падения? Давление воздуха: оно действует на карточку снизу с силою, которая, как легко рассчитать, гораздо больше, чем вес воды в стакане, т. е. чем 200 г. Когда мне еще в детстве впервые показали и объяснили этот опыт, мне было сказано, что вода должна наполнять стакан весь, от дна до краев. Если она занимает только часть стакана, остальная же занята воздухом, то опыт не удастся: воздух изнутри стакана будет давить на бумажку, уравновешивая давление наружного воздуха; следовательно, она должна отпасть.
Рис. 63
Я решил тотчас же проделать опыт с неполным стаканом, чтобы самому увидеть, как бумажка отпадает. Представьте же мое удивление, когда я убедился, что она и тогда не отпадает! Карточка держится не хуже, чем при полном стакане. Это послужило для меня наглядным уроком того, как следует изучать явления природы. Высшим судьей в естествознании должен быть опыт. Каждую теорию, как бы правдоподобна она ни казалась нашему уму, следует проверять опытом. «Поверяя и проверяя» – таков был лозунг первых исследователей природы (флорентийских академиков) в XVII веке, таков он и для физика XX века. И если при проверке теории окажется, что опыт не подтверждает ее, то надо доискаться, в чем именно теория ошибается. В нашем случае нетрудно найти ошибку объяснения, на первый взгляд вполне убедительного. Отогнем осторожно один угол бумажки в тот момент, когда она закрывает снизу отверстие незаполненного стакана. Мы увидим, что через воду пройдет воздушный пузырь. Что это показывает? То, что в стакане воздух более разрежен, чем снаружи: иначе наружный воздух не устремлялся бы в пространство над водой. В этом и вся разгадка: стакан хотя и содержит воздух, но менее плотный, чем наружный, а следовательно, слабее давящий. Очевидно, при опрокидывании стакана вода, опускаясь вниз, вытесняет из него часть воздуха; оставшаяся же часть, распространяясь в прежнем объеме, разрежается и давит слабее. В сущности, и в том случае, когда вода заполняет стакан, казалось бы, целиком, – над бумажкой, кроме воды, имеется в небольшом количестве также воздух. Достаточно самого тонкого слоя воздуха нормальной плотности, чтобы уравновесить давление атмосферы снаружи. Но воздух в стакане немного разрежен по сравнению с наружным, и оттого бумажка прижимается к краям стакана. Если бы воздуха в стакане совсем не было, наружное давление прижимало бы бумажку с силою в 60–70 кг (соответственно площади отверстия стакана). Оторвать бумажку от краев стакана было бы очень трудно; между тем в действительности для этого достаточно самого слабого усилия. Вы видите, что даже простейшие физические опыты при внимательном отношении могут навести на серьезные размышления.
Водолазный колокол
Для этого опыта годится обыкновенный умывальный таз; но если вы сможете получить глубокую и широкую банку, то опыт проделать удобнее. Вам понадобится еще и высокий стакан. Это и будет ваш «водолазный колокол», а таз с водой представит уменьшенное подобие моря или озера. Едва ли есть опыт проще этого. Вы держите стакан вверх дном, погружаете его на дно таза, продолжая придерживать рукой (чтобы вода его не вытолкнула). Легко при этом заметить, что вода внутрь стакана почти не проникает: воздух не допускает ее. Это становится гораздо нагляднее, когда под вашим «колоколом» находится какой-нибудь легко намокающий предмет, например кусочек сахара. Положите на воду пробковый кружок, на него – сахар и прикройте сверху стаканом. Смело опускайте теперь стакан в воду. Сахар очутится ниже уровня воды, но останется, сухим, потому что вода под стакан не проникает.
Рис. 64
Тот же опыт можно проделать и со стеклянной воронкой, если, повернув ее широким концом вниз, плотно заткнуть пальцем ее отверстие и тогда погрузить в воду. Вода под воронку не проникает; но стоит отнять палец от отверстия и тем дать воздуху выход, чтобы вода быстро поднялась в воронке до уровня в сосуде. Этот опыт должен наглядно объяснить вам, как люди могут находиться и работать под водой в водолазном колоколе или внутри тех широких труб, которые называются «кессонами». Вода не проникает внутрь водолазного колокола или кессона по той же причине, по какой не втекает она под стакан в нашем опыте.
Человек под водой
Хотя в воде и растворен воздух, но организм наш так устроен, что дышать этим воздухом, как дышат рыбы, мы не можем. Чтобы оставаться под водою, человек должен либо иметь с собою запас воздуха, либо же быть в сообщении с воздухом, который имеется над водою. Подводная техника пошла по обоим путям. Спускаясь в так называемом водолазном колоколе, изобретенном в конце XVIII века, человек дышит запасом того воздуха, который имеется в колоколе. А опускаясь под воду в особом водолазном костюме – скафандре, человек получает свежий воздух извне: его накачивают вниз насосами. В настоящее время водолазными колоколами больше не пользуются, а прибегают к услугам только скафандров.
Рис. 65
В старину думали, что снабжать водолаза воздухом можно очень просто: провести трубку от его рта наружу, выше уровня воды, и водолаз сможет как угодно долго оставаться под водою, дыша с помощью этой трубки. Когда слон окунается с головой в речную воду, он так и делает: выставляет конец хобота из-под воды и дышит наружным воздухом. Однако, когда тем же приемом пробовали пользоваться люди, дело кончалось очень плачевно: несчастных водолазов извлекали из воды бездыханными. После нескольких таких катастроф никто уже не решался больше повторять столь опасные опыты. Чтобы выяснить причину этих неожиданных неудач, один венский врач произвел ряд испытаний над неглубоким погружением себя самого в ванну с трубкой, дающей возможность дышать под водою. Оказалось, что человеческий организм едва выдерживает такое испытание в течение нескольких минут, даже если глубина погружения достигает всего 60 см. На глубине 90 см врач мог продержаться всего одну минуту; на глубине целого метра – только полминуты; на глубине же полутора метров – не более шести секунд. Когда же врач отважился погрузиться с трубкой до глубины двух метров, он секунды через две уже потерял сознание; в его организме произошли до того серьезные расстройства, что удалось восстановить здоровье только после трех месяцев тщательного лечения в постели. В чем же дело? Почему так вредно дышать под водой через трубку, выставленную наружу? Нетрудно сообразить, какова причина, если вспомнить, что человеческое тело, погруженное под воду, подвергается там снаружи усиленному давлению, между тем как его легкие, соединенные трубкой с наружным воздухом, испытывают нормальное атмосферное давление. В результате неравенства наружного и внутреннего давлений кровь вытесняется из нижней части тела в легкие; из-за уменьшения оттока крови от сердца оно переполняется и расширяется. При опытах с мелкими животными обнаруживалось почти полное обескровливание ног и брюшной полости, так что при вскрытии внутренних органов под ножом почти не выступало крови. Можно поставить вопрос: почему ничего подобного не происходит с просто ныряющим человеком? Потому что, ныряя, мы имеем запас воздуха в своих легких; этот воздух сдавливается окружающей водою в той же мере, как и прочие части тела. Неравного давления снаружи и внутри нет, оттого и нет тех болезненных явлений, о которых мы сейчас рассказали. Теперь вы поймете, что водолазу, находящемуся на дне реки в водолазном костюме, надо подводить воздух не под обыкновенным атмосферным давлением, а под усиленным, соответствующим давлению воды на той глубине, где водолаз находится. На глубине 10 м давление воды составляет 1 кг на квадратный сантиметр. А так как нормальное давление атмосферы равно также 1 кг на квадратный сантиметр, и это давление через воду передается водолазу, то, опустившись на глубину 10 м, водолаз испытывает давление в 2 кг на квадратный сантиметр. Значит, ему надо подавать насосом воздух, слитый вдвое: такой воздух, по законам физики, давит вдвое сильнее обычного атмосферного. На глубину 20 м надо накачивать водолазу воздух, сжатый втрое; на глубину 30 м – сжатый вчетверо, и т. д. Но может ли человек дышать таким густым воздухом? Опыт показывает, что наибольшая плотность воздуха, каким можно еще человеку дышать, отвечает сжатию в 41/2 раза. Такое давление господствует под водою на глубине 35 м. Это и есть наибольшая глубина, на какую может человек погружаться в обыкновенном водолазном костюме[14]. Подвиги советских водолазов прогремели на весь мир. Далеко за рубежом известна работа бесстрашных и искусных водолазов Эпрона (Экспедиции подводных работ особого назначения на морях и реках СССР). За десять лет работы – с 1923 по 1933 – эпроновцы спасли затонувшие корабли «Малыгин», «Сталинград», «Харьков», подняли подводную лодку «№ 9», ледокол «Садко» и еще целую сотню других судов. (Кто хочет поближе познакомиться с работой водолазов, пусть прочтет книжечку К. Золотовского «Подводные мастера»; автор ее, сам водолаз, сумел рассказать о своей работе просто, правдиво и увлекательно.) Я сказал раньше, что водолаз не может спускаться глубже 40 метров. При этом я имел в виду «подводного мастера», одетого в водолазный костюм обычного образца. Обыкновенный скафандр представляет мягкую резиновую одежду, через которую давление воды целиком передается телу. Водолазные костюмы, сделанные целиком из самой прочной листовой стали, в сущности, не что иное, как стальной футляр, который защищает тело водолаза от давления окружающей воды. Футляр этот может однако сгибаться в сочленениях и дает водолазу свободу передвижения. В таком костюме можно опускаться гораздо глубже 35 м, потому что тело водолаза не испытывает вовсе давления воды и в футляр можно накачивать воздух обычной плотности. Конечно, и для стального футляра существует граница, глубже которой его нельзя погружать, чтобы он не смялся давлением воды[15].
Рис. 66
Металлические водолазные костюмы явились в ответ на требование практической жизни. Дело в том, что за время мировой войны затонуло свыше 4 тыс. судов, несших на себе груз стоимостью в миллиарды рублей. Часть этих грузов погребена на глубине, не настолько большой, чтобы нельзя было их извлечь. Насколько успешно идет подъем затонувших ценностей, видно из того, что до сих пор удалось уже извлечь со дна морей количество грузов, стоимость которых в несколько раз больше, чем цена золота, добытого на богатейших разработках Калифорнии со времени их открытия. Лучшие водолазные костюмы жесткой системы, рассчитанные на глубину 200 м, весят в воздухе полтонны, под водою – не более 8 кг.
В пучине океана
Осенью 1932 г. американским ученым Уильямом Бибом была достигнута глубина 660 метров. Он спускался в закрытом стальном шаре, который ученый назвал «батисферой» (т. е. глубинным шаром). Послушаем, что рассказывает он сам о своем необычайном спуске в пучину океана:
«Приготовления к спуску заняли почти целый месяц. Надежность батисферы была проверена путем повторного опускания снаряда порожняком на глубину около 900 м. «Испытания батисферы были сопряжены с большой опасностью. После одного из пробных погружении батисфера оказалась полной воды почти доверху. Находившийся в ней воздух был сжат до ничтожного объема. Я принялся отвинчивать огромный запорный болт в центре люка. После нескольких поворотов раздался высокий, певучий звук. Затем врывалась тонкая и сильная струя водяной пыли. Я осторожно и медленно вращал рукоятку запорного винта, прислушиваясь к музыкальному звуку, который становился все более нетерпеливым, по мере того как давление заключенных в батисфере веществ постепенно уменьшалось – по четверть тонны давления на каждый оборот винта. Предвидя возможные последствия, я приказал очистить палубу перед люком батисферы. Вдруг запорный болт вырвался у меня из рук и пулей перелетел через палубу. За ним вылетел мощный столб воды, превратившийся затем в шумный водопад. Окажись я на пути, я был бы обезглавлен».
В конце сентября все было уже подготовлено к спуску. Участвовать в экспедиции должны были двое: названный ученый и кроме того строитель батисферы Бартон. Сидя внутри стального шара, они могли все время сообщать по телефону свои наблюдения на борт корабля, с которого производился спуск.
Рис. 67. Стальной шар – батисфера – для глубоководных погружений. Американец Биб опускался в этом снаряде до глубины 660 метров
«Осмотрев еще раз все инструменты и приборы, в 1 час 15 мин. дня мы залезли в батисферу. Люк был захлопнут, и началось крепление десятка больших гаек, от которого мы чуть не оглохли. Затем, одновременно с прощальными словами, был приведен во вращение запорный болт. «Бартон тотчас отвернул кран кислородного баллона, а я надел наушники и установил контакт с телефонисткой. Я приказал начать погружение. Мы почувствовали, как батисфера дрогнула и, покачиваясь, поплыла в воздухе. Послышался плеск, которого я никогда не забуду, и по стеклу побежали пузыри и пена. Мы погружались в сверкающие изумрудом верхние слои океана. «Об иллюминаторах из кварца и о люке я не беспокоился. Они отлично выдержали испытание при погружении на 900 метров. Но сальник телефонного ввода пропустил при последнем испытании около 2 литров воды. Другим источником беспокойства была 1 000-ваттная лампа. Мы взяли ее впервые и не знали, какое действие она произведет на кварцевое окошко, около которого помещалась. «На протяжении первых 60 метров мы старались устроиться как можно удобнее в нашем тесном помещении (поперечник батисферы равен 1, 5 метра). Записная книжка, самые необходимые инструменты и фонарик находились у меня в открытом мешке на груди. Мелкие вещи я рассовал по карманам, а все остальное приходилось отыскивать по мере надобности среди других вещей в куче на дне нашего шара. Я занял наблюдательный пост у окна, а Бартон следил за прожектором, сальником и кислородным баллоном. «В 2 часа 47 мин. шар достиг глубины 300 метров. «Освещение становилось все более слабым. В течение некоторого времени, вися на этой глубине, мы проверяли состояние нашего мирка. Бартон установил, что люки и кран кислородного баллона в полной исправности. На телефонном вводе также не было никаких следов влажности. Я осветил фонариком окно и увидел, что из-под оправы стекла стекают тонкие струйки. Затем я заметил влажные струйки на всех стенках, и мы поняли, что это результат нормального сгущения наших испарений на холодной стали, а не просачивание воды снаружи. «Бок о бок с нами плыла пара глубоководных угрей. Под самым моим носом промелькнули морские звезды. «Кислород уходил быстрее, чем полагалось. Поэтому Бартон начал передавать показания приборов как можно короче, а мои сообщения наверх приобрели чисто телеграфный слог. «В 2 часа 56 мин. мы были оглушены каким-то ревом и узнали, что сирена буксира отмечает наше погружение на 425 метров, т. е. на глубину, которая была до сих пор рекордной. «Достигши 450 метров, мы включили прожектор. В свете его луча стали видны два больших угря, которые тотчас же уплыли в сторону. «На глубине 495 метров стало темно, как… в преисподней. Мне уже не хватало сравнений для определения этого мрака. На расстоянии метра проплыла стая медуз, фосфоресцирующих ярким зеленым светом. «В 3 часа 6 мин. мы были на глубине 510 метров и оставались здесь в течение трех минут. На этой глубине человеческий глаз не различал никаких признаков солнечного света, даже с помощью инструментов. «Таким образом я опустился ниже зоны проникновения солнечных лучей, доступных человеческому зрению. «На глубине 585 метров мы испытали первую серьезную качку. Она началась неожиданно. Я порезал себе губу о выступ окна, а Бартон ударился головой о дверь. Мы пережили самый сильный испуг за все время погружения. На одно мгновение у нас создалось ощущение, будто мы оборвались и опрокидываемся. В дальнейшем такая качка повторялась каждые 2–3 минуты. «Когда мы погрузились до 630 метров, батисферу качало так сильно, что большая часть наших химических составов просыпалась нам на голову. Пришлось непрерывно перераспределять остающиеся, чтобы обеспечить возможно большую поверхность поглощения углекислого газа. «В 3 часа 23 мин. я приказал опустить нас глубже, и спустя 3 мин. нам сообщили, что мы находимся на глубине 660 метров. Температура оставалась почти прежней, но сталь была холодна, как лед, а оконное стекло холодило кончик моего носа. Окно приходилось все время протирать. «Немного спустя, исследуя сальниковые уплотнения над головой, мы установили, что шланг телефонного ввода вдавлен на 1, 5 дюйма внутрь батисферы. Качка становилась нестерпимой… Посовещавшись, мы решили, что цель нами достигнута и нет нужды оставаться в этих неприятных и нелегких условиях. Я распорядился начать подъем. «В 4 часа 8 мин. мы выбрались на поверхность моря. Из нашей темницы мы вылезли разбитые и со сведенными конечностями, но очень довольные…»[16]
Сухим из воды
Вам уже известно, что воздух, окружающий нас со всех сторон, давит с значительной силой на все вещи, с которыми он соприкасается. Опыт, о котором сейчас будет рассказано, еще нагляднее покажет вам существование атмосферного давления. Положите на плоскую тарелку монету или металлическую пуговицу и налейте воды. Монета очутится под водой. Вынуть ее теперь голыми руками, не замочив пальцев и не выливая воды из тарелки, конечно, невозможно. Зажгите внутри стакана бумажку и, когда воздух нагреется, опрокиньте стакан на тарелку рядом с монетой так, чтобы монета очутилась не под стаканом. Теперь смотрите, что будет. Ждать придется недолго. Бумага под стаканом сразу погаснет, и воздух начнет в стакане остывать. По мере же его остывания вода будет втягиваться стаканом и вскоре вся там соберется, обнажив дно тарелки. Подождите минуту, чтобы монета обсохла, и берите ее, не замочив пальцев (рис. 68). Понять причину этих явлений нетрудно. Когда воздух в стакане нагрелся, он расширился, как и все нагреваемые тела; избыток его нового объема вышел из стакана. Когда же воздух начал остывать, его давления стало недостаточно, чтобы в холодном состоянии уравновешивать наружное давление атмосферы. Вода под стаканом испытывает теперь на каждый сантиметр своей поверхности меньшее давление, чем в открытой части тарелки: она вгоняется под стакан, втискиваемая туда избытком давления наружного воздуха. Вода, значит, не «втягивается» стаканом, не всасывается им, как кажется при первом взгляде, а вгоняется под стакан извне.
Рис. 68. Горящее пламя собирает под опрокинутый стакан всю воду из тарелки
Теперь, когда вам известна причина происходящих здесь явлений, вы поймете также, что нет надобности для опыта зажигать бумагу или горящую, смоченную в спирте ватку (как часто советуют), вообще пользоваться каким-либо пламенем. Сполосните стакан кипятком, – опыт удастся столь же хорошо. Все дело здесь в том, чтобы нагреть воздух в стакане, а способ – безразличен[17]. Легко, например, проделать тот же опыт в следующем виде. Выпив чаю, опрокиньте стакан, пока он еще горяч, над блюдцем, в которое вы налили немного чаю заранее, чтобы к моменту опыта он уже успел охладиться. Через минуту-две чай из блюдца соберется под стакан.
Давление ветра
Когда ветер, т. е. движущийся поток воздуха, встречает преграду, он оказывает на нее давление большее, чем 1 кг на квадратный сантиметр. Давление воздуха на эту преграду спереди и сзади в таких случаях не уравновешивается, и избыток давления со стороны ветра стремится сдвинуть преграду с места. Это усилие и имеют в виду, когда говорят о «давлении ветра». Величина давления ветра на обдуваемую им поверхность зависит от его скорости, от его «силы». Слабый ветер давит на квадратный метр поверхности, поставленной под прямым углом к нему, с силою 4–5 кг, сильный ветер – до 30 кг, шторм – до 75 кг. Нетрудно рассчитать, что, например, на радиомачту в 4 м высоты и 5 см толщины сильный боковой ветер давит с силою 6 кг, а шторм – 15 кг. Вы легко можете вычислить также, что на телеграфную проволоку длиною 50 м и толщиною 4 мм сильный ветер оказывает давление в 4 кг, а телеграфный столб высотою 8 м и поперечником 25 см шторм стремится опрокинуть с силою 150 кг. Интересно подсчитать, что сильнее: давление урагана или рабочее давление пара в цилиндре паровой машины? Как ни странно, но пар оказывает во много раз большее удельное давление, чем самый сильный ураган. Действительно, ураган давит с силою 300 кг на 1 м2. Это составляет на 1 см2 в 10 000 раз меньше, т. е. 3/100 кг. Давление же пара, увлекающее цилиндр в движение, достигает десятков килограммов на 1 см2, а в новейших машинах еще больше. Следовательно, на одну и ту же площадку работающий пар давит в сотни раз сильнее, чем самый опустошительный ураган. Если движущийся воздух сильно давит на встречное тело, то и спокойный воздух оказывает значительное давление на быстро движущееся тело. Это и есть причина того, что называют «сопротивлением воздуха».
Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 650; Нарушение авторского права страницы