Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Практическая работа 3. Методика расчета рассеивания выбросов в атмосферу
Цель занятий: изучить расчет рассеивания выбросов в атмосферу. Задачи: - изучить теоретический материал; - изучить методику расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий»; - рассчитать СМ (максимальная концентрация вредных веществ в приземном слое атмосферы) и Н (минимальная высота трубы) - рассчитать ПДВ (предельно допустимых выбросов) и СМ.Т. (соответствующая ПДВ максимальная концентрация вредных веществ в устье выбросной трубы или шахты) Учебные вопросы: 1. Источники и виды загрязнения атмосферы. 2. Методы очистки газовоздушных смесей. 3. Аппараты очистки выбросов в атмосферу. 4. Химический и физический состав выбросов. 5. Влияние выбросов на загрязнение атмосферы. Изучив данную тему, студент должен: иметь представление: - о значении, составе атмосферного воздух, - о видах и источниках загрязнения атмосферы, - о влиянии вредных выбросов на экосистемы биосферы. знать: - законодательные, нормативные документы в области охраны атмосферного воздуха; - методы очистки газовоздушных смесей; - принципы работы аппаратов по очистке выбросов; уметь: - производить расчеты концентрации вредных веществ при выбросах в атмосферу; - производить расчеты рассеивания вредных выбросов в атмосферу; Владеть навыками - оценки ПДВ в атмосферу; - выбора соответствующей аппаратуры для очистки выбросов; - реализации мер по защите атмосферного воздуха; Методические рекомендации по изучению темы: При освоении темы необходимо: - изучить теоретический материал по учебной литературе; - выполнить задание по № варианта (Таблица 4). - ответить на контрольные вопросы;
Теоретический материал Загрязнение атмосферы Земли — принесение в атмосферный воздух новых нехарактерных для него физических, химических и биологических веществ или изменение их естественной концентрации. По источникам загрязнения: - естественное - антропогенное По характеру загрязнения атмосферы: - физическое — механическое (пыль, твердые частицы), радиоактивное (радиоактивное излучение и изотопы), электромагнитное (различные виды электромагнитных волн, в том числе радиоволны), шумовое (различные громкие звуки и низкочастотные колебания) и тепловое загрязнение (например, выбросы тёплого воздуха и т. п.) - химическое — загрязнение газообразными веществами и аэрозолями. На сегодняшний день основные химические загрязнители атмосферного воздуха это: оксид углерода (IV), оксиды азота, диоксид серы, углеводороды, альдегиды, тяжёлые металлы (Pb, Cu, Zn, Cd, Cr), аммиак, пыль и радиоактивные изотопы - биологическое — в основном загрязнение микробной природы. Например, загрязнение воздуха вегетативными формами и спорами бактерий и грибов, вирусами, а также их токсинами и продуктами жизнедеятельности. Основными источниками загрязнения атмосферы являются: - Природные (естественные загрязнители минерального, растительного или микробиологического происхождения, к которым относят извержения вулканов, лесные и степные пожары, пыль, пыльцу растений, выделения животных и др.) - Искусственные (антропогенные), которые можно разделить на несколько групп: - Транспортные — загрязнители, образующиеся при работе автомобильного, железнодорожного, воздушного, морского и речного транспорта; - Производственные — загрязнители, образующиеся как выбросы при технологических процессах, отоплении; - Бытовые — загрязнители, обусловленные сжиганием топлива в жилище и переработкой бытовых отходов. По составу антропогенные источники загрязнения атмосферы также можно разделить на несколько групп: - Механические загрязнители — пыль цементных заводов, пыль от сгорания угля в котельных, топках и печах, сажа от сгорания нефти и мазута, истирающиеся автопокрышки и т. д.; - Химические загрязнители — пылевидные или газообразные вещества, способные вступать в химические реакции; - Радиоактивные загрязнители Методы очистки. Для очистки атмосферного воздуха применяются различные методы очистки газов от технических загрязнений: NOx, SO2, H2S, NH3, оксида углерода, различных органических и неорганических веществ. Абсорбция представляет собой процесс растворения газообразного компонента в жидком растворителе. Абсорбционные системы разделяют на водные и неводные. Во втором случае применяют обычно малолетучие органические жидкости. Жидкость используют для абсорбции только один раз или же проводят ее регенерацию, выделяя загрязнитель в чистом виде. В качестве примеров можно назвать: получение минеральных кислот (абсорбция SO3 в производстве серной кислоты, абсорбция оксидов азота в производстве азотной кислоты); получение солей (абсорбция оксидов азота щелочными растворами с получением нитрит-нитратных щелоков, абсорбция водными растворами извести или известняка с получением сульфата кальция); других веществ (абсорбция NH3 водой для получения аммиачной воды и др.). В зависимости от способа создания поверхности соприкосновения фаз различают поверхностные, барботажные и распыливающие абсорбционные аппараты. Адсорбционный метод являются одним из самых распространенных средств защиты воздушного бассейна от загрязнений. Основными промышленными адсорбентами являются активированные угли, сложные оксиды и импрегнированные сорбенты. Активированный уголь (АУ) нейтрален по отношению к полярным и неполярным молекулам адсорбируемых соединений. Он менее селективен, чем многие другие сорбенты, и является одним из немногих, пригодных для работы во влажных газовых потоках. Активированный уголь используют, в частности, для очистки газов от дурно пахнущих веществ, рекуперации растворителей и т.д. Можно выделить следующие основные способы осуществления процессов адсорбционной очистки: После адсорбции проводят десорбцию и извлекают уловленные компоненты для повторного использования. Таким способом улавливают различные растворители, сероуглерод в производстве искусственных волокон и ряд других примесей. После адсорбции примеси не утилизируют, а подвергают термическому или каталитическому дожиганию. Этот способ применяют для очистки отходящих газов химико-фармацевтических и лакокрасочных предприятий, пищевой промышленности и ряда других производств. Данная разновидность адсорбционной очистки экономически оправдана при низких концентрациях загрязняющих веществ и (или) многокомпонентных загрязнителей. После очистки адсорбент не регенерируют, а подвергают, например, захоронению или сжиганию вместе с прочно хемосорбированным загрязнителем. Этот способ пригоден при использовании дешевых адсорбентов. Для проведения процессов адсорбции разработана разнообразная аппаратура. Наиболее распространены адсорберы с неподвижным слоем гранулированного или сотового адсорбента. Непрерывность процессов адсорбции и регенерации адсорбента обеспечивается применением аппаратов с кипящим слоем. В последние годы все более широкое применение получают волокнистые сорбционно-активные материалы. Их отличает более высокая химическая и термическая стойкость, однородность пористой структуры, значительный объем микропор и более высокий коэффициент массопередачи (в 10-100 раз больше, чем у сорбционных материалов). Установки занимают значительно меньшую площадь. Адсорбционные методы являются одним из самых распространенных в промышленности способов очистки газов. Их применение позволяет вернуть в производство ряд ценных соединений. Термическое дожигание представляет собой метод обезвреживания газов путем термического окисления различных вредных веществ, главным образом органических, в практически безвредных или менее вредных, преимущественно СО2 и Н2ОПрименение термических методов дожигания позволяет достичь 99%-ной очистки газов. Термические методы широко применяются для очистки отходящих газов от токсичных горючих соединений. Разработанные в последние годы установки дожигания отличаются компактностью и низкими энергозатратами. Применение термических методов эффективно для дожигания пыли многокомпонентных и запыленных отходящих газов. Термокаталитические методы газоочистки отличаются универсальностью. С их помощью можно освобождать газы от оксидов серы и азота, различных органических соединений, монооксида углерода и других токсичных примесей. Каталитические методы позволяют преобразовывать вредные примеси в безвредные, менее вредные и даже полезные. Они дают возможность перерабатывать многокомпонентные газы с малыми начальными концентрациями вредных примесей, добиваться высоких степеней очистки, вести процесс непрерывно, избегать образования вторичных загрязнителей. В качестве эффективных катализаторов, находящих применение на практике, служат самые различные вещества – от минералов, которые используются почти без всякой предварительной обработки, и простых массивных металлов до сложных соединений заданного состава и строения. Наибольшее распространение получили каталитические методы обезвреживания Озонные методы применяют для обезвреживания дымовых газов от SO2(NOx) и дезодорации газовых выбросов промышленных предприятий. Введение озона ускоряет реакции окисление NO до NO2 и SO2 до SO3. После образования NO2 и SO3 в дымовые газы вводят аммиак и выделяют смесь образовавшихся комплексных удобрений (сульфата и нитрата аммония). Время контакта газа с озоном, необходимое для очистки от SO2 (80-90%) и NOx (70-80%)составляет 0, 4 – 0, 9 сек. Энергозатраты на очистку газов озонным методом оценивают в 4-4, 5% от эквивалентной мощности энергоблока, что является, по-видимому, основной причиной, сдерживающей промышленное применение данного метода. Основное применение озонные методы дезодорации находят при очистке газов, которые выделяются при переработке сырья животного происхождения на мясо-жиро-комбинатах и в быту. Биохимические методы очистки основаны на способности микроорганизмов разрушать и преобразовывать различные соединения. Разложение веществ происходит под действием ферментов, вырабатываемых микроорганизмами в среде очищаемых газов.Биохимические системы более всего пригодны для очистки газов постоянного состава. Биохимическую газоочистку проводят либо в биофильтрах, либо в биоскрубберах. В биофильтрах очищаемый газ пропускают через слой насадки, орошаемый водой, которая создает влажность, достаточную для поддержания жизнедеятельности микроорганизмов. Поверхность насадки покрыта биологически активной биопленкой (БП) из микроорганизмов. Плазмокаталитический метод. Это довольно новый способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая - каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе. Фотокаталитический метод. В основном при этом используются катализаторы на основе TiO2, которые облучаются ультрафиолетом. Популярное:
|
Последнее изменение этой страницы: 2017-03-08; Просмотров: 1276; Нарушение авторского права страницы