Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


II. Упадок механистического воззрения



 

Две электрические жидкости

 

Последующие страницы содержат скучный отчет о некоторых очень простых экспериментах. Отчет будет скучным не только потому, что описание экспериментов неинтересно по сравнению с самим осуществлением их, но и потому, что самый смысл экспериментов не очевиден до тех пор, пока его не выяснит теория. Наша цель состоит в том, чтобы показать яркий пример, характеризующий роль теории в физике.

1. Пусть металлический стержень укреплен на стеклянной подставке, а концы стержня связаны с помощью металлических проводников с электроскопом. Что такое электроскоп? Это простой прибор, который в основном состоит из двух листочков золотой фольги, подвешенных на конце короткого металлического стержня. Они заключены в стеклянную банку или бутылку, так что металл находится в контакте только с неметаллическими телами, называемыми изоляторами. Кроме электроскопа и металлического стержня в нашем распоряжении имеются твердая эбонитовая палочка и кусок шерстяной ткани.

До осуществления эксперимента обратим внимание на то, висят ли листочки сомкнутыми вместе, ибо это их нормальное положение, или нет. Если они случайно не сомкнуты, то прикосновение пальца к металлическому стержню сведет их вместе. После того как эти предварительные действия проделаны, эбонитовая палочка энергично натирается шерстяной тканью и приводится в соприкосновение с металлом. Листочки сразу же отойдут друг от друга. Они остаются в таком положении даже после того, как эбонитовая палочка будет отодвинута в сторону (рис. 27).

2. Проделаем другой эксперимент, используя те же приборы, что и раньше, но предварительно приведя листочки электроскопа в прежнее положение, в котором они свободно висят, касаясь друг друга. Сейчас мы не будем касаться эбонитовой палочкой металлического стержня, а только поднесем ее близко к металлу. Листочки электроскопа опять разойдутся. Но сейчас это разделение оказывается иным. Когда эбонитовая палочка удаляется, совсем не коснувшись металла, листочки, вместо того чтобы оставаться разделенными, немедленно спадают, возвращаясь к своему нормальному положению.

3. Для третьего эксперимента слегка изменим приборы. Предположим, что металлический стержень состоит из двух кусков, соединенных вместе. Мы натираем эбонитовую палочку шерстяной тканью и снова подносим ее близко к металлу. Происходит то же явление: листочки разделяются. Но теперь мы сначала отделим части металлического стержня друг от друга и только после этого удалим эбонитовую палочку. Мы замечаем, что в этом случае листочки остаются разделенными, а не спадают от своего нормального положения, как это было во втором эксперименте (рис. 28).

Едва ли эти простые и наивные эксперименты могут возбудить живейший интерес или энтузиазм. В Средние века тот, кто их осуществлял, был бы, вероятно, осужден; нам они кажутся и скучными, и нелогичными. Было бы очень трудно, не смущаясь, повторить их после чтения сухого отчета об их выполнении. Некоторые теоретические рассуждения, однако, делают их понятными. Мы могли бы сказать больше: едва ли возможно представить себе такие эксперименты как осуществление случайной игры воображения, без предварительно существовавших более или менее определенных идей об их значении.

Теперь мы укажем идеи, лежавшие в основе очень простой и наивной теории, объясняющей все описанные факты.

Существуют две электрические жидкости, одна называется положительной (+), а другая — отрицательной (—). Они подобны субстанции в уже разъясненном смысле: ее величина может возрастать или убывать, но общая сумма сохраняется в любой изолированной системе. Имеется, однако, существенное отличие между этим случаем и случаем с теплотой, веществом или энергией. Мы имеем две электрические субстанции. Здесь невозможно применение предыдущей аналогии с деньгами, если не сделать некоторого обобщения. Тело электрически нейтрально, если положительная и отрицательная электрические жидкости полностью уничтожают друг друга. Человек ничего не имеет или потому, что у него действительно ничего нет, или потому, что сумма денег, отложенных в его сейфе, в точности равна сумме его долгов. С двумя родами электрических жидкостей мы можем сравнить дебет и кредит в бухгалтерских книгах.

Далее, теория полагает, что обе электрические жидкости одинакового рода отталкивают друг друга, в то время как обе жидкости противоположного рода притягивают. Это можно представить графически так, как это сделано на рис. 29.

Необходимо последнее теоретическое предположение. Имеется два вида тел: тела, в которых эти жидкости могут двигаться свободно, — так называемые проводники — и тела, в которых они не могут двигаться, — так называемые изоляторы. Как всегда бывает в таких случаях, это деление тел на два вида нельзя рассматривать слишком строго. Идеальный проводник, как и идеальный изолятор, — это абстракции, которые никогда не могут быть реализованы. Металлы, земля, человеческое тело — все это примеры проводников, хотя и неодинакового качества. Стекло, резина, фарфор и им подобные тела — это изоляторы. Воздух не всегда является изолятором, как это знает тот, кто видел описанные эксперименты. Плохие результаты электростатических экспериментов часто объясняются влажностью воздуха, увеличивающей его проводимость.

Эти теоретические положения достаточны для объяснения трех описанных экспериментов. Мы рассмотрим их еще раз в том же порядке, как и раньше, но в свете теории электрических жидкостей.

1. Эбонитовая палочка, как и все другие тела при нормальных условиях, электрически нейтральна. Она содержит обе жидкости, положительную и отрицательную, в равных количествах. Трением о шерсть мы разделяем их. Это утверждение чисто условно, ибо это есть приложение терминологии, созданной теорией, к описанию процесса трения. Тот вид электричества, который эбонитовая палочка имеет в избытке, впоследствии был назван отрицательным, — название, которое, конечно, является лишь делом соглашения. Если бы эксперименты были осуществлены со стеклянной палочкой, натертой кошачьим мехом, мы должны были бы назвать избыток электричества на ней положительным, чтобы не противоречить уже принятым положениям. Но продолжим рассказ. Мы передаем электрическую жидкость металлическому проводнику, касаясь его эбонитом. В этом проводнике она движется свободно, распространяясь по всему металлу, включая и золотые листочки. Так как отрицательные жидкости взаимно отталкиваются, то оба листочка стремятся удалиться друг от друга, насколько это возможно, в результате чего и наблюдается их разделение. Металл покоится на стеклянной подставке или каком-либо ином изоляторе, так что электрическая жидкость остается на проводнике, насколько это допускает слабая проводимость воздуха. Теперь мы понимаем, почему должны коснуться металла пальцем в начале эксперимента. В этом случае металл, человеческое тело и земля составляют один большой проводник, по которому электрическая жидкость разливается так, что практически на электроскопе ничего не остается.

2. Второй эксперимент начинается так же, как и первый. Но теперь эбонит не касается металла, а лишь подносится к нему. Обе жидкости в проводнике, имея возможность свободно двигаться, разделяются; одна притягивается к палочке, а другая отталкивается. Они вновь смешиваются, когда эбонитовая палочка удаляется, так как жидкости противоположного рода притягивают друг друга.

3. Затем в присутствии натертой эбонитовой палочки мы разделяем металлический стержень на две части и, наконец, удаляем палочку. В этом случае после удаления эбонитовой палочки обе жидкости не смешиваются, так что золотые листочки сохраняют избыток одной электрической жидкости и остаются разделенными.

В свете этой простой теории все упомянутые здесь факты кажутся понятными. Та же теория дает больше, позволяя нам понять не только эти, но и многие другие «факты» в области «электростатики». Цель всякой теории — вести нас к новым фактам, наводить на мысль о новых экспериментах и приводить к открытию новых явлений и новых законов. Пример сделает это ясным. Представим себе изменение во втором эксперименте. Предположим, что я оставляю эбонитовую палочку возле металла и в то же время касаюсь металла своим пальцем (рис. 30). Что теперь случится? Теория дает ответ: отталкиваемая палочкой отрицательная (—) жидкость теперь может удалиться через мое тело, так что в результате в металлическом стержне остается только одна жидкость, положительная (+). Листочки электроскопа остаются разделенными. И действительно, эксперимент подтверждает это предсказание.

Теория, о которой мы сейчас рассказываем, конечно, наивна и не совпадает с точкой зрения современной физики. Тем не менее это хороший пример, показывающий характерные черты всякой физической теории.

В науке нет вечных теорий. Всегда происходит так, что некоторые предсказания теории опровергаются экспериментом. Всякая теория имеет свой период постепенного развития и триумфа, после которого она может испытать быстрый упадок. Подъем и падение субстанциональной теории теплоты, уже обсуждавшиеся здесь, являются одним из многих возможных примеров. Другие примеры, более глубокие и важные, будут обсуждаться позднее. Почти всякий большой успех в науке возникает из кризиса старой теории как результат попытки найти выход из создавшихся трудностей. Мы должны проверять старые идеи, старые теории, хотя они и принадлежат прошлому, ибо это единственное средство понять значительность новых идей и пределы их справедливости.

На первых страницах нашей книги мы сравнивали роль исследователя с ролью детектива, который, собрав необходимые факты, находит правильное решение посредством чистого мышления. В одном весьма существенном отношении это сравнение следует считать чрезвычайно поверхностным. И в жизни, и в детективных новеллах преступление дано. Детектив должен просмотреть письма, отпечатки пальцев, пули, ружья, но, по крайней мере, он знает, что убийство совершилось. Для ученого дело обстоит не так. Было бы нетрудно представить себе человека, который абсолютно ничего не знает об электричестве; все древние довольно счастливо жили, ничего не зная о нем. Пусть этому человеку дан металл, золотой листок, бутылки, эбонитовая палочка, шерстяная тряпочка — словом, все материалы, необходимые для осуществления трех наших экспериментов. Он может быть очень культурным лицом, но он, вероятно, нальет в бутылки вино, использует тряпочку для чистки и никогда не проникнется вдруг идеей о том, чтобы проделать те эксперименты, которые мы описали. Для детектива факт преступления дан и задача формулируется так: кто убил Кука Робина? Ученый должен, по крайней мере отчасти, сам совершить преступление, затем довести до конца исследование. Более того, его задача состоит в том, чтобы объяснить не один только данный случай, а все связанные с ним явления, которые происходили или могут еще произойти.

В факте введения понятия жидкостей мы видим влияние тех механистических идей, которые стремятся все объяснить с помощью субстанций и простых сил, действующих между ними. Чтобы увидеть, можно ли механистическую точку зрения применить к описанию электрических явлений, мы должны рассмотреть следующую проблему. Пусть даны два небольших шара, имеющих электрический заряд, т. е. несущих избыток какой-то одной электрической жидкости. Мы знаем, что шары будут либо притягивать, либо отталкивать друг друга. Но зависит ли сила только от расстояния и если да, то как? Самым простым будет предположение, что эта сила зависит от расстояния так же, как и сила тяготения, которая уменьшается, скажем, до одной девятой своей первоначальной величины, если расстояние увеличивается в три раза. Эксперименты, проделанные Кулоном, показали, что этот закон действительно справедлив. Спустя 100 лет после того, как Ньютон открыл закон тяготения, Кулон обнаружил такую же зависимость электрической силы от расстояния. Но закон Ньютона и закон Кулона существенно различаются в следующих двух отношениях. Гравитационное притяжение существует всегда, в то время как электрические силы существуют только в том случае, если тела обладают электрическими зарядами. В законе тяготения имеется только притяжение, а электрические силы могут как притягивать, так и отталкивать.

Здесь возникает тот же самый вопрос, который мы рассматривали в связи с теплотой. Являются ли электрические жидкости невесомыми субстанциями или нет? Другими словами, будет ли вес куска металла одинаков, когда он нейтрален и когда он заряжен? Весы никакого различия не обнаруживают. Мы заключаем, что электрические жидкости тоже являются членами семейства невесомых субстанций.

Дальнейший прогресс в теории электричества требует введения двух понятий. Мы опять будем избегать строгих определений, используя вместо них аналогии с уже известными понятиями. Мы помним, как существенно было для понимания тепловых явлений различие между самой теплотой и температурой. Равным образом и здесь важно различать электрический потенциал и электрический заряд. Различие между обоими понятиями станет ясным из следующей аналогии:

Электрический потенциал «Температура

Электрический заряд «Теплота

 

Два проводника, например два шара различной величины, могут иметь одинаковый заряд, т. е. одинаковый избыток электрической жидкости, но потенциал будет различным в обоих случаях, а именно: он выше для меньшего шара и ниже для большего. Электрическая жидкость будет иметь боґльшую плотность и, стало быть, будет более сжата в малом проводнике. Так как отталкивательные силы должны с плотностью возрастать, то тенденция заряда улетучиваться будет больше в меньшем шаре, чем в большем. Эта тенденция заряда уходить с проводника есть непосредственное выражение его потенциала. Чтобы ясно показать различие между зарядом и потенциалом, мы сформулируем несколько предложений, описывающих поведение нагретых тел, и соответствующие им предложения, касающиеся заряженных проводников. Т е п л о т а

Два тела, имеющих вначале различную температуру, спустя некоторое время после того, как они приведены в соприкосновение, достигают одной и той же температуры.

Равные количества теплоты производят различные изменения температуры в двух телах, если теплоемкости этих тел различны.

 

Термометр, находящийся в контакте с каким-либо телом, длиной своего ртутного столбика показывает свою собственную температуру, а вместе с тем и температуру тела.

Два изолированных проводника, имеющих вначале различные электрические потенциалы, очень скоро после того, как они приведены в соприкосновение, достигают одного и того же потенциала.

Равные величины электрических зарядов производят различные изменения электрических потенциалов в двух телах, если электрические емкости тел различны.

Электроскоп, находящийся в контакте с каким-либо проводником, разделением золотых листочков показывает свой собственный электрический потенциал, а вместе с тем и электрический потенциал проводника. Но такую аналогию нельзя продолжать слишком далеко. Следующий пример показывает как сходство, так и различие. Если горячее тело приведено в контакт с холодным, то теплота течет от горячего к холодному телу. Предположим, с другой стороны, что мы имеем два изолированных проводника, имеющих равные, но противоположные заряды, положительный и отрицательный. Оба — при разных потенциалах. Согласились считать потенциал, соответствующий отрицательному заряду, более низким, чем потенциал, соответствующий положительному. Если оба проводника сдвинуты до соприкосновения друг с другом или соединены проволокой, то из теории электрических жидкостей следует, что они не покажут никакого заряда, а это означает, что никакой разности электрических потенциалов нет вовсе. Мы должны представить себе, что «течение» электрического заряда от одного проводника к другому совершается за очень короткое время, в течение которого разность потенциалов исчезает. Но как это происходит? Течет ли положительная жидкость к отрицательно заряженному телу или отрицательная — к положительно заряженному?

В фактах, которые здесь разбирались, мы не видели никакого основания для решения этого вопроса. Мы можем предположить осуществляющейся либо одну из этих возможностей, либо и ту и другую, считая, что течение электричества совершается одновременно в обоих направлениях. Это лишь вопрос соглашения, которое мы принимаем, и нельзя придавать значения выбору, ибо мы знаем, что нет никакой возможности экспериментально решить этот вопрос. Дальнейшее развитие, ведущее к гораздо более глубокой теории электричества, дало разрешение этой проблемы, которая совершенно бессмысленна, пока она сформулирована в пределах примитивной теории электрических жидкостей. В дальнейшем мы будем придерживаться следующего способа выражения: электрические жидкости текут от проводника с более высоким потенциалом к проводнику с более низким потенциалом. Таким образом, в случае наших двух проводников электричество течет от положительно заряженного проводника к отрицательно заряженному (рис. 31). Это выражение — исключительно дело соглашения и с этой точки зрения совершенно произвольно.

Все эти затруднения показывают, что аналогия между теплотой и электричеством ни в коем случае не является полной.

Мы видели, какова возможность приспособления механистического воззрения к описанию элементарных фактов электростатики. То же самое возможно и в отношении магнитных явлений.

 

Магнитные жидкости

 

Мы будем поступать здесь так же, как и раньше: начинать с очень простых фактов, а затем отыскивать их теоретическое объяснение.

1. Пусть у нас имеются два длинных магнита; один из них уравновешен так, что он занимает горизонтальное положение, а другой мы возьмем в руку. Если концы обоих магнитов поднести друг к другу, между ними обнаруживается сильное притяжение (рис. 32). Этого всегда можно достигнуть. Если притяжения нет, мы должны повернуть магнит и попробовать другой конец. Концы магнитов называются их полюсами. Продолжая эксперимент, мы двигаем полюс магнита, который держим в руке, вдоль другого магнита. При этом наблюдается уменьшение притяжения, а когда полюс достигает середины уравновешенного магнита, то вообще никакого проявления сил нет. Если полюс движется дальше в том же направлении, то наблюдается отталкивание, достигающее наибольшей силы у второго полюса уравновешенного магнита.

2. Приведенный выше пример наводит на следующую мысль. Каждый магнит имеет два полюса. Нельзя ли изолировать один из них? Осуществление этой идеи кажется очень простым, а именно: разломить магнит на две равные части. Мы видели, что никакого взаимодействия между полюсом одного магнита и серединой другого магнита нет. Но если мы действительно разломим магнит, то результат окажется весьма удивительным и неожиданным. Если мы повторим первый эксперимент, но теперь лишь с половиной уравновешенного магнита, то результаты будут совершенно те же самые, что и раньше. Там, где раньше не было никакого следа магнитной силы, теперь находится сильный полюс.

Как следует объяснить эти факты? Мы можем попробовать набросать теорию магнетизма, аналогичную теории электрических жидкостей. Это внушено тем обстоятельством, что здесь, как и в электростатических явлениях, мы имеем и притяжение, и отталкивание. Вообразим себе два проводника в форме шаров, обладающих равными зарядами, один — положительным, а другой — отрицательным. Здесь слово «равные» означает величины, имеющие одинаковое абсолютное значение: например, +5 и –5 имеют одинаковое абсолютное значение. Предположим, что шары связаны посредством изолятора, например стеклянного стержня. Схематически это устройство может быть представлено стрелкой, направленной от отрицательно заряженного проводника к положительно заряженному. Мы назовем это электрическим диполем (рис. 33). Ясно, что два таких диполя вели бы себя совершенно так же, как и магнитные стержни в первом эксперименте. Если мы рассматриваем наше изобретение как модель реального магнита, мы можем сказать, предполагая существование магнитных жидкостей, что магнит — это не что иное, как магнитный диполь, имеющий на своих концах две жидкости разных родов. Эта простая теория, подражающая теории электричества, вполне подходит для объяснения первого эксперимента. По этой теории должно быть притяжение на одном конце, отталкивание на другом и уравновешивание равных и противоположных сил в середине. Но как обстоит дело со вторым экспериментом? Разламывая стеклянный стержень электрического диполя, мы получаем два изолированных полюса. То же самое, казалось бы, должно быть и для железного стержня магнитного диполя, что противоречит результатам второго эксперимента. Таким образом, это противоречие вынуждает нас ввести несколько более утонченную теорию. Вместо нашей первоначальной модели мы можем представить себе, что магнит состоит из очень малых элементарных магнитных диполей, которые не могут быть разделены на отдельные полюсы. Во всем магните господствует порядок, ибо все элементарные диполи в нем имеют одинаковое направление (рис. 34). Мы непосредственно видим, почему разрезание магнита вызывает появление двух новых полюсов на новых концах и почему эта более тонкая теория объясняет факты как первого эксперимента, так и второго.

Многие факты можно объяснить и без этого уточнения теории. Возьмем пример: мы знаем, что магнит притягивает куски железа. Почему? В куске обычного железа обе магнитные жидкости смешаны так, что не обнаруживается никакого чистого эффекта. Поднесение положительного полюса действует как «приказ к разделению» жидкостей в результате притяжения отрицательной жидкости в железе и отталкивания положительной. Возникает притяжение между железом и магнитом. Если магнит отодвинут, жидкости более или менее возвращаются к своему первоначальному положению, что зависит от того, в какой степени они «запоминают» приказ, исходящий от внешней силы.

Необходимо немного сказать о количественной стороне проблемы. Имея два очень длинных магнитных стержня, мы могли бы исследовать притяжение (или отталкивание) их полюсов, когда они близко поднесены друг к другу. Если стержни достаточно длинны, то действие других концов стержней ничтожно. Как зависит притяжение или отталкивание от расстояния между полюсами? Ответ, данный экспериментом Кулона, таков: зависимость от расстояния та же, что и в законе тяготения Ньютона, и в законе электростатики Кулона.

Мы опять видим в этой теории отражение общей точки зрения — тенденцию описать все явления посредством сил притяжения и отталкивания, зависящих только от расстояния и действующих между неизменными частицами.

Здесь следовало бы упомянуть один хорошо известный факт, который мы используем в дальнейшем. Земля — это большой магнитный диполь. Нет ни малейшего намека на объяснение того, почему это так. Северный географический полюс почти совпадает с отрицательным (—) магнитным полюсом, а Южный географический полюс — с положительным (+) магнитным. Названия «положительный» и «отрицательный» — это дело лишь соглашения, но поскольку они так однажды обозначены, это вынуждает нас и в любых других случаях соответственно различать полюсы. Магнитная игла, насаженная на вертикальную ось, подчиняется «приказу» магнитной силы Земли. Она направляет свой (+) полюс к Северному географическому полюсу, т. е. по направлению к (—) магнитному полюсу Земли.

Хотя в области указанных здесь электрических и магнитных явлений мы можем последовательно провести механистическую точку зрения, нет никакого основания гордиться этим или радоваться этому. Некоторые черты этой теории являются, конечно, неудовлетворительными, если не обескураживающими. Мы должны были изобрести новые виды субстанций — две электрические жидкости и элементарные магнитные диполи. Изобилие субстанций начинает становиться чрезмерным.

Силы просты. Они одинаково выражены для тяготения, электричества и магнетизма. Но цена, уплаченная за эту простоту, высока — введение новых невесомых субстанций. Они являются довольно искусственными понятиями и совершенно не связаны с веществом и его массой.

 

Первая серьезная трудность

 

Мы уже готовы к тому, чтобы отметить первую серьезную трудность в приложении нашей общей философской точки зрения. Позднее будет показано, что эта трудность совместно с другими, еще более серьезными, привела к полному крушению уверенности в том, что все явления могут быть объяснены механистически.

Особенно быстрое развитие электричества как ветви науки и техники началось с открытия электрического тока. Здесь мы находим в истории науки один из очень немногих примеров, в которых случай сыграл существенную роль. История конвульсий лягушечьей лапки рассказана во многих вариантах. Не ручаясь за достоверность в отношении деталей, можно, без сомнения, сказать, что случайное открытие Гальвани привело Вольта в конце XVIII столетия к построению прибора, известного под названием вольтовой батареи. Теперь она практически не употребляется, но на нее еще указывают в школьных демонстрациях и в учебниках как на очень простой пример источника тока.

Принцип ее построения прост. Берется несколько стеклянных стаканов, каждый из которых содержит воду и немного серной кислоты. В каждом стакане погружены в раствор две металлические пластинки: одна медная, а другая цинковая. Медная пластинка одного стакана соединена с цинковой следующего, так что только цинковая пластинка первого стакана и медная последнего остаются несоединенными. Мы можем обнаружить разность электрических потенциалов между медной пластинкой первого стакана и цинковой последнего посредством весьма чувствительного электроскопа, если число «элементов», т. е. число стаканов с пластинками, составляющими батарею, достаточно велико.

Мы ввели батарею, составленную из некоторых элементов, только для того, чтобы получить нечто легко измеряемое уже описанным прибором. Для дальнейших рассуждений с таким же успехом будет служить один элемент. Обнаруживается, что потенциал меди выше, чем потенциал цинка. Слово «выше» употребляется здесь в том же смысле, в каком +2 больше, чем –2. Если один проводник связан со свободной медной пластинкой, а другой — с цинковой, оба станут заряженными: первый — положительно, а второй — отрицательно. На этой стадии рассуждений ничего особенно нового или поразительного не появилось, и мы можем потребовать применить наши предыдущие представления о разности потенциалов. Мы видели, что разность потенциалов между двумя проводниками можно быстро уничтожить посредством соединения проводников проволокой, в которой возникает поток электрической жидкости от одного проводника к другому. Этот процесс был уподоблен выравниванию температур тепловым потоком. Но производит ли поток в вольтовой батарее работу?

По словам Вольта, пластинки ведут себя как проводники, «слабо заряженные, которые действуют непрерывно или так, что их заряд после каждого разряда вновь восстанавливается; которые, одним словом, поставляют неограниченный заряд или производят непрерывное действие, или импульс электрической жидкости».

Результат этого эксперимента удивителен потому, что разность потенциалов между медной и цинковой пластинками не уменьшается, как в случае двух заряженных проводников, связанных проволокой. Разность эта остается неизменной, и, согласно жидкостной теории, должен возникать постоянный поток электрической жидкости от высшего потенциального уровня (медная пластинка) к низшему (цинковая пластинка). Пытаясь спасти жидкостную теорию, мы можем предположить, что действует некоторая постоянная сила, которая возрождает разность потенциалов и вызывает поток электрической жидкости. Но явление в целом удивительно, если рассматривать его с энергетической точки зрения. В проволоке, по которой течет ток, порождается заметное количество теплоты, достаточное даже для того, чтобы расплавить проволоку, если она тонка. Следовательно, в проволоке создается тепловая энергия. Но вся вольтова батарея образует изолированную систему, так как она не получает энергии извне. Если мы хотим спасти закон сохранения энергии, мы должны найти место, где происходят превращения, за счет которых создается теплота. Нетрудно установить, что в батарее происходят сложные химические процессы, в которых активное участие принимают как сам раствор, так и погруженные в него медь и цинк. С энергетической точки зрения здесь имеется цепь превращений: химическая энергия ® энергия текущей электрической жидкости (тока) ® теплота. Вольтова батарея не сохраняется вечно; химические изменения, связанные с потоком электричества, после некоторого времени делают батарею неработоспособной.

Эксперимент, который по-настоящему обнаружил большие трудности в применении механистических идей, должен для впервые слушающего о нем звучать странно. Он осуществлен Эрстедом около 120 лет назад. Последний пишет:

 

Этими экспериментами, кажется, показано, что магнитная стрелка сдвигалась из своего положения с помощью гальванического прибора, и именно тогда, когда гальваническая цепь была замкнута, а не разомкнута, как напрасно считали несколько лет назад очень известные физики.

 

Предположим, что мы имеем вольтову батарею и кусок металлической проволоки. Если проволока соединена с медной пластинкой, но не связана с цинковой, то существует разность потенциалов, но ток течь не может. Предположим, что проволока изогнута в форме кольца, в центре которого расположена магнитная стрелка, причем как проволочное кольцо, так и стрелка лежат в одной и той же плоскости. Пока проволока не прикасается к цинковой пластинке, ничего не происходит. Никаких действующих сил нет, наличие разности потенциалов не оказывает влияния на положение стрелки. Кажется трудным понять, почему «очень известные физики», как выразился Эрстед, ожидали такого влияния.

Соединим теперь проволоку с цинковой пластинкой. Немедленно произойдут странные вещи. Магнитная стрелка выходит из своего первоначального положения. Один из ее полюсов направлен к читателю, если страница этой книги представляет плоскость кольца (рис. 35). Опыт доказывает, что на магнитный полюс действует сила, перпендикулярная к плоскости кольца. Перед лицом экспериментальных фактов мы едва ли можем избежать такого вывода о направлении действующей силы.

Этот эксперимент интересен в первую очередь тем, что он показывает связь между двумя на первый взгляд совершенно различными явлениями — магнетизмом и электрическим током. Имеется и другой, даже более важный момент. Сила взаимодействия между магнитным полюсом и малыми отрезками проволоки, по которой течет ток, не должна лежать вдоль линий, связывающих проволоку и стрелку или частицы текущей электрической жидкости и элементарные магнитные диполи. Сила перпендикулярна к этим линиям! Впервые появляется сила, совершенно отличная от тех сил, к которым, соответственно нашей механистической точке зрения, мы стремились свести все действия внешнего мира. Мы помним, что силы тяготения, электростатики, магнетизма, подчиняющиеся законам Ньютона и Кулона, действуют вдоль линии, соединяющей оба притягивающихся или отталкивающихся тела.

Эта трудность была еще более подчеркнута экспериментом, который с большим искусством осуществлен Роуландом почти 60 лет назад. Оставляя в стороне технические детали, мы могли бы описать этот эксперимент следующим образом. Вообразим себе маленький заряженный шар (рис. 36). Представим себе далее, что этот шар очень быстро движется по окружности, в центре которой находится магнитная стрелка. Принципиально этот эксперимент таков же, что и эксперимент Эрстеда; единственное отличие состоит в том, что вместо обычного тока мы имеем механически совершающееся движение электрического заряда. Роуланд нашел, что результат в самом деле подобен тому, который наблюдался, когда по витку проволоки протекал ток. Магнит отклоняется силой, перпендикулярной к рисунку.

Пусть теперь заряд движется быстрее. В результате сила, действующая на магнитный полюс, возрастает; отклонение магнита от его начального положения становится более заметным. Это наблюдение представляет новое большое усложнение. Не только направление силы не совпадает с линией, связывающей заряд и магнит, но и ее абсолютная величина зависит от скорости заряда. Вся механистическая точка зрения базировалась на уверенности в том, что все явления могут быть объяснены в рамках сил, зависящих только от расстояния, а не от скорости. Результат эксперимента Роуланда, конечно, подрывает эту уверенность. Всё же мы можем попробовать остаться консервативными и искать решения в рамках старых идей.

Трудности этого рода, внезапные и неожиданные препятствия в триумфальном развитии теории, часто вырастают в науке.

Иногда простое обобщение старых идей оказывается, по крайней мере временно, хорошим выходом. Например, в данном случае казалось бы достаточным расширить предыдущую точку зрения и ввести более общее понятие сил, действующих между элементарными частицами. Однако очень часто оказывается невозможным подправить старую теорию, и трудности приводят к ее упадку и к развитию новой. В данном случае сыграло роль не только поведение ничтожной магнитной иглы, которая разрушила на первый взгляд хорошо обоснованные и преуспевающие механистические теории. Следующий удар, еще более энергичный, был нанесен уже с другой стороны. Но это другая история, и мы расскажем ее позднее.

 

Скорость света

 

В Галилеевых «Беседах о двух новых науках» мы находим разговор учителя и его учеников о скорости света:

Сагредо: Но какого рода и какой степени быстроты должно быть это движение света? Должны ли мы считать его мгновенным или же совершающимся во времени, как другие движения? Нельзя ли опытом убедиться, каково оно?

Симпличио: Повседневный опыт показывает, что распространение света совершается мгновенно. Если вы наблюдаете с большого расстояния действие артиллерии, то свет от пламени выстрелов без всякой потери времени запечатлевается в нашем глазу в противоположность звуку, который доходит до уха через значительный промежуток времени.

Сагредо: Ну, синьор Симпличио, из этого общеизвестного опыта я не могу вывести никакого другого заключения, кроме того, что звук доходит до нашего слуха через боґльшие промежутки времени, нежели свет; но это нисколько не убеждает меня в том, что распространение света происходит мгновенно и не требует известного, хотя и малого времени…

Сальвиати: Малая доказательность этих и других подобных же наблюдений заставила меня подумать о каком-либо способе удостовериться безошибочно в том, что освещение, т. е. распространение света, совершается действительно мгновенно…


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-11; Просмотров: 739; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.048 с.)
Главная | Случайная страница | Обратная связь