Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Интервалы возрастания/убывания



возрастает на всей области определения

8. Наибольшее/наименьшее значение функции

- не существует.

 

График функции

(рис 11).

7. Свойства функции и её график

Рассмотрим окружность с центром, расположенным в начале координат, и радиусом, равным единице (это так называемая тригонометрическая окружность ).

Для любогодействительного числа можно провести радиус ON этой окружности, образующий с осью угол, радианная мера которого равна числу (положительным считается направление поворота против хода часовой стрелки). (рис 5)

О. Число, равное ординате конца единичного радиуса, задающего угол , называется синусом угла и обозначается .

Т.к. каждому значению величины угла на тригонометрической окружности соответствует единственная точка , такая, что радиус ON образует угол с осью , то данное определение задает функцию .

Свойства:

1. Область определения функции: .

Т.к. для любого значения угла однозначно определена точка, являющаяся концом соответствующего радиуса, то область определения функции : .

 

2. Множество значений функции:

Теорема.

Множеством значений функции является промежуток

Доказательство:

Действительно, ордината всякой точки, являющейся концом радиуса тригонометрической окружности, может принимать лишь значения из отрезка .

С другой стороны, для значения ординаты из этого отрезка можно указать хотя бы одну точку на окружности, имеющую эту ординату.

Следовательно, это значение будет синусом угла, образованного положительным направлением оси и радиусом, соединяющим центр окружности и построенную точку.

3. Периодичность:

Наименьший положительный период функции равен

Доказательство:

Т.к. центральный угол, соответствующий полной окружности, равен , то точки, соответствующие углам изображаются на тригонометрической окружности одной и той же точкой, следовательно, синусы этих углов равны.

Это означает, что число является периодом рассматриваемой функции.

Докажем, что - наименьший положительный период.

Рассмотрим значение функции , равное 1. Оно достигается только при . Значит, никакое число, меньшее , не может быть периодом. Значит, что - действительно наименьший положительный период функции .

Чётность/нечётность

Рассмотрим точки M и N, соответствующие на тригонометрической окружности углам и . Поскольку всякая окружность симметрична себе относительно своего диаметра (диаметр тригонометрической окружности лежит на оси ), а равные по величине углы при симметрии переходят в равные углы, то точки M и N симметричны относительно оси , следовательно, их ординаты противоположны. Это означает, что для всех х из области определениявыполняется равенство , т.е. функция является нечетной.

Точки пересечения графика с осями координат.

График пересекает ось в точках с абсциссами, определяемыми уравнением , т.е. , график пересекает ось в точке с ординатой, определяемой равенством , т.е. таким образом, , ,

6. Промежутки знакопостоянства функции:

Т.к. ординаты точек, лежащих в верхней полуплоскости, положительны, то значения синуса положительны для углов, расположенных в первой и второй координатных четвертях, и отрицательны - для углов, расположенных в третьей и четвертой координатных четвертях.

Т.о., при ; при ;

Интервалы возрастания/убывания

Теорема.

Функция не является монотонной на всей области определения, она возрастает на и убывает на .

Доказательство:

Докажем, например, возрастание функции на . В силу периодичности функции, достаточно рассмотреть отрезок .

Для этого рассмотрим 2 различных значения , такие, что .

Рассмотрим разность значений синусов этих углов: .

Заметим, что правая часть полученного равенства отрицательна. Действительно, т.к. числа расположены на отрезке и , то , поэтому ; аналогично , поэтому . Тем самым доказано, что из неравенства следует неравенство , т.е. функция возрастает на , а значит, возрастает на каждом из промежутков вида .

Докажем убывание функции на . В силу периодичности функции, достаточно рассмотреть отрезок .

Для этого рассмотрим 2 различных значения , такие, что .

Рассмотрим разность значений синусов этих углов:

.

Заметим, что правая часть полученного равенства положительна. Действительно, т.к. числа расположены на отрезке и , то , поэтому ; аналогично , значит . Т.о. , т.е. функция убываетна , а значит, убывает на каждом из промежутков вида .

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 347; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь