Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Определение возрастающей функции.
Функция y = f(x) возрастает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции. Определение убывающей функции. Функция y = f(x) убывает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.
Наибольшим значением функции y = f(x) на промежутке X называют такое значение , что для любого справедливо неравенство . Наименьшим значением функции y = f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .
Неопределенные интегралы В дифференциальном исчислении основной операцией является нахождение производной заданной функции. Сущность здесь заключается в установлении скорости изменения этой функции по сравнению с аргументом. Функция F (х) называется первообразной функцией для данной функции f(х) (или, короче, первообразной данной функции f(х)) на данном промежутке, если на этом промежутке определёный неопределёный
. По определению дифференциала имеем .
.
Понятие определённого интеграла Определённым интегралом от непрерывной функции f(x) на конечном отрезке [a, b] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. При этом употребляется запись Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a, b] – отрезком интегрирования. Таким образом, если F(x) – какая-нибудь первообразная функция для f(x), то, согласно определению, (38) При a = b по определению принимается Равенство (38) называется формулой Ньютона-Лейбница. Разность F(b) – F(a) кратко записывают так: Поэтому формулу Ньютона-Лейбница будем записывать и так: (39) Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F(x) и Ф(х) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(х) =F(x) + C. Поэтому Тем самым установлено, что на отрезке [a, b] приращения всех первообразных функции f(x) совпадают.
Свойства определенного интеграла Ниже предполагается, что f (x) и g (x) - непрерывные функции на замкнутом интервале [a, b]. 1.
2. где k - константа;
3.
4.
5. Если для всех , то .
6.
7.
8. Если в интервале [a, b], то
Формула Ньютона-Лейбница Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Если F (x) - первообразная функции f (x) на[a, b], то
15. Геометрический смысл определенного интеграла Если а < b, f(x) > = 0, то т.е. определенный интеграл от функции у = f(x) по отрезку [а, b] равен площади криволинейной трапеции, ограниченной сверху графиком функции у = f{x), слева и справа - отрезками прямых х = а, х = b, снизу — отрезком оси Ох (см. рис.). Если а < b и f(x) < = 0, то т. е. определенный интеграл от функции, принимающей неположительные значения, равен площади соответствующей криволинейной трапеции, взятой со знаком минус (см. рис.). Если а < b и f(х) меняют знак на отрезке [а, b], то определенный интеграл равен алгебраической сумме площадей соответствующих криволинейных трапеций. Вычисление площади плоской фигуры В общем случае площадь находится с помощью формулы
16.
СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ - прямые в пространстве, не лежащие в одной плоскости. Углом между С. п. наз. любой из углов между двумя параллельными им прямыми, проходящими через произвольную точку пространства. Если а и b - направляющие векторы С. п., то косинус угла между С. п. выражается формулой Общим перпендикуляром двух С. п. наз. прямая, пересекающая каждую из прямых и им перпендикулярная. Для любых двух С. п. существует единственный общий перпендикуляр. Уравнения (как линии пересечения двух нек-рых плоскостей) общего перпендикуляра к двум С. п. r=r1+at1 и r=r2+bt2 имеют вид Расстоянием между С. п. наз. длина отрезка общего перпендикуляра к этим двум прямым, концы к-рого лежат на этих прямых (или расстояние между параллельными плоскостями, в к-рых лежат С. п.). Расстояние dмежду С. п. выражается формулой
|
Последнее изменение этой страницы: 2017-03-14; Просмотров: 574; Нарушение авторского права страницы