Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Определение возрастающей функции.



Функция y = f(x) возрастает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y = f(x) убывает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


 

Наибольшим значением функции y = f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Наименьшим значением функции y = f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

 

 

Неопределенные интегралы

В дифференциальном исчислении основной операцией является нахождение производной заданной функции. Сущность здесь заключается в установлении скорости изменения этой функции по сравнению с аргументом.

Функция F (х) называется первообразной функцией для данной функции f(х) (или, короче, первообразной данной функции f(х)) на данном промежутке, если на этом промежутке

определёный

неопределёный

 

 

  1. Производная неопределенного интеграла равна подынтегральной функции, а его дифференциал — подынтегральному выражению.
    Действительно

.

По определению дифференциала имеем

.

  1. Неопределенный интеграл от дифференциала функции f (x) равен функции f (x) с точностью до постоянного слагаемого, т. е.

.

 

Понятие определённого интеграла

Определённым интегралом от непрерывной функции f(x) на конечном отрезке [a, b] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. При этом употребляется запись

Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a, b] – отрезком интегрирования.

Таким образом, если F(x) – какая-нибудь первообразная функция для f(x), то, согласно определению,

(38)

При a = b по определению принимается

Равенство (38) называется формулой Ньютона-Лейбница. Разность F(b) – F(a) кратко записывают так:

Поэтому формулу Ньютона-Лейбница будем записывать и так:

(39)

Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F(x) и Ф(х) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(х) =F(x) + C. Поэтому

Тем самым установлено, что на отрезке [a, b] приращения всех первообразных функции f(x) совпадают.

 

Свойства определенного интеграла

Ниже предполагается, что f (x) и g (x) - непрерывные функции на замкнутом интервале [a, b].

1.

 

2. где k - константа;

 

3.

 

4.

 

5. Если для всех , то .

 

6.

 

7.

 

8. Если в интервале [a, b], то

 

Формула Ньютона-Лейбница

Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Если F (x) - первообразная функции f (x) на[a, b], то

 

15. Геометрический смысл определенного интеграла

Если а < b, f(x) > = 0, то

т.е. определенный интеграл от функции у = f(x) по отрезку [а, b] равен площади криволинейной трапеции, ограниченной сверху графиком функции у = f{x), слева и справа - отрезками прямых х = а, х = b, снизу — отрезком оси Ох (см. рис.).

Если а < b и f(x) < = 0, то

т. е. определенный интеграл от функции, принимающей неположительные значения, равен площади соответствующей криволинейной трапеции, взятой со знаком минус (см. рис.).

Если а < b и f(х) меняют знак на отрезке [а, b], то определенный интеграл равен алгебраической сумме площадей соответствующих криволинейных трапеций.

Вычисление площади плоской фигуры

В общем случае площадь находится с помощью формулы

 

 

16.

 
Взаимное расположение двух прямых в пространстве
 
 
Взаимное расположение двух прямых и пространстве характеризуется следующими тремя возможностями. 1. Прямые лежат в одной плоскости и не имеют общих точек — параллельные прямые. 2. Прямые лежат и одной плоскости и имеют одну общую точку — прямые пересекаются. 3. В пространстве две прямые могут быть расположены еще так, что не лежат ни в одной плоскости. Такие прямые называются скрещивающимися (не пересекаются и не параллельны). Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая пересекает эту плоскость и точке, которая не лежит на первой прямой, то эти прямые скрещиваются. На рис. 26 прямая a лежит в плоскости , а прямая с пересекает в точке N. Прямые a и с — скрещивающиеся. Теорема. Через каждую из двух скрещивающихся прямых проходит только одна плоскость, параллельная другой прямой.    

СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ

- прямые в пространстве, не лежащие в одной плоскости.

Углом между С. п. наз. любой из углов между двумя параллельными им прямыми, проходящими через произвольную точку пространства. Если а и b - направляющие векторы С. п., то косинус угла между С. п. выражается формулой

Общим перпендикуляром двух С. п. наз. прямая, пересекающая каждую из прямых и им перпендикулярная. Для любых двух С. п. существует единственный общий перпендикуляр. Уравнения (как линии пересечения двух нек-рых плоскостей) общего перпендикуляра к двум С. п. r=r1+at1 и r=r2+bt2 имеют вид

Расстоянием между С. п. наз. длина отрезка общего перпендикуляра к этим двум прямым, концы к-рого лежат на этих прямых (или расстояние между параллельными плоскостями, в к-рых лежат С. п.). Расстояние dмежду С. п. выражается формулой

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 574; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь