Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Миноры и алгебраические дополнения



ВОПРОС№1

Определение 1. Матрицей A называется любая прямоугольная таблица, составленная из чисел aij, которые называют элементами матрицы и обозначается

(2.1)

Заметим, что элементами матрицы могут быть не только числа. Представим себе, что вы описываете книги, которые стоят на вашей книжной полке. Пусть у вас на полке порядок и все книги стоят на строго определенных местах. Таблица, которая будет содержать описание вашей библиотеки (по полкам и следованию книг на полке), тоже будет матрицей. Но такая матрица будет не числовой. Другой пример. Вместо чисел стоят разные функции, объединенные между собой некоторой зависимостью. Полученная таблица также будет называться матрицей. Иными словами, Матрица, это любая прямоугольная таблица, составленная из однородных элементов. Здесь и далее мы будем говорить о матрицах, составленных из чисел.

Вместо круглых скобок для записи матриц применяют квадратные скобки или прямые двойные вертикальные линии

(2.1*)

Определение 2. Если в выражении (1) m = n, то говорят о квадратной матрице, а если m n, то о прямоугольной.

В зависимости от значений m и n различают некоторые специальные виды матриц:

1. Матрица - строка (или строковая матрица), состоящая из одной строки. Это прямоугольная матрица размером 1 × n.

2. A=(a11 a12... an).

3. Матрица - столбец (столбцевая матрица), состоящая только из одного столбца. Это также прямоугольная матрица размером m × 1

4. Матрица, состоящая из одного элемента. A=(a11)1× 1=a11.

5. Нулевая матрица, состоящая из одних нулей, в матричной алгебре играет роль 0, обозначается V.

6. Единичная матрица, состоящая из нулей, кроме главной диагонали, на которой стоят единицы. Обозначается E и играет роль единицы в матричной алгебре

7. Диагональная матрица, квадратная порядка n, состоящая из нулей и на главной диагонали стоят не равные нулю элементы (не обязательно единицы)

Важнейшей характеристикой квадратной матрицы является ее определитель или детерминант, который составляется из элементов матрицы и обозначается

Очевидно, что DE=1; DV= .

Определение 3. Если detA 0, то матрица A называется невырожденной или не особенной.

Определение 4. Если detA = 0, то матрица A называется вырожденной или особенной.

Определение 5. Две матрицы A и B называются равными и пишут A = B, если они имеют одинаковые размеры и их соответствующие элементы равны, т.е.

Например, матрицы и равны, т.к. они равны по размеру и каждый элемент одной матрицы равен соответствующему элементу другой матрицы. А вот матрицы и нельзя назвать равными, хотя детерминанты обеих матриц равны, и размеры матриц одинаковые, но не все элементы, стоящие на одних и тех же местах равны. Матрицы и разные, так как имеют разный размер. Первая матрица имеет размер 2х3, а вторая 3х2. Хотя количество элементов одинаковое – 6 и сами элементы одинаковые 1, 2, 3, 4, 5, 6, но они стоят на разных местах в каждой матрице. А вот матрицы и равны, согласно определению 5.

Определение 6. Если зафиксировать некоторое количество столбцов матрицы A и такое же количество ee строк, тогда элементы, стоящие на пересечении указанных столбцов и строк образуют квадратную матрицу n-го порядка, определитель которой Δ k называется минором k–го порядка матрицы A.

ПРИМЕР:. Выписать три минора второго порядка матрицы

Решение.

ВОПРОС№2

Операции над матрицами

Равенство матриц. Две матрицы и одинакового размера m на n называются равными, если , i = 1, 2, …, m, j=1, 2, …, n.

Если матрицы A и B равны, то будем писать A=B.

Линейные операции. Суммой двух матриц A и B размера m на n называется матрица C размера m на n, элементы которой определяются равенством

Сумму матриц A и B будем обозначать C=A+B.

Матрица называется противоположной к матрице .

Теорема 2.1 Операция сложения матриц обладает следующими свойствами: для любых матриц и нулевой матрицы

1) A+B=B+A; (перестановочность или коммутативность операции сложения

2) (A+B)+C = A+(B+C); (ассоциативность или сочетательное свойство)

3) A+O = O+A =A;

4) A+(-A)=(-A)+A=O.

Перечисленные выше свойства непосредственно вытекают из определения и доказываются по единой схеме.

Разностью матриц и называется матрица A+(-B).

Разность матриц A и B будем обозначать A-B.

Произведением матрицы на число называется матрица , элементы которой определены равенством

Произведение матрицы A на число будем обозначать .

Теорема 2.2 Операция умножения матрицы на число обладает следующими свойствами:

1) ;

2) ;

3) (Распределительное свойство относительно сложения матриц);

4) (Распределительное свойство относительно сложения чисел);

5) -A=(-1)A.

Все перечисленные свойства непосредственно вытекают из определения.

Операции сложения матриц и умножения матрицы на число позволяют для произвольных матриц одинакового размера и произвольных чисел однозначно определить матрицу , называемую линейной комбинацией матриц с коэффициентами .

Умножение матриц. Произведением матриц и называется матрица , элементы которой определены равенством

Произведение матриц A и B будем обозначать C=AB.

Из определения следует, что произведение AB определено лишь в том случае, когда число столбцов матрицы A совпадает с числом строк матрицы B. Это означает, что оба произведения AB и BA определены тогда и только тогда, когда матрицы A и B имеют размеры и соответственно. Следовательно равенство AB=BA возможно лишь для квадратных матриц одинакового порядка. Однако и в этом случае произведение матриц, вообще говоря, зависит от порядка сомножителей.

Матрицы A и B называются перестановочными или коммутирующими, если AB=BA.

Теорема 2.3 Операция умножения матриц обладает следующими свойствами:

1) (AB)C=A(BC); (Свойство ассоциативности)

2) , для любого действительного числа

3) A(B+C)=AB+AC, (A+B)C=AC+BC (Свойство дистрибутивности), для любых матриц A, B, C, для которых левые части равенств имеют смысл.

Справедливость свойств 2) и 3) доказываются непосредственно.

В качестве иллюстрации приведём доказательство первого равенства свойства 3). Пусть , , . Матрицы A(B+C) и AB+AC имеют одинаковый размер - . Пусть - элемент матрицы A(B+C) в позиции (i, j), - элемент матрицы AB+AC в позиции (i, j), тогда

Из равенств (1) и (2) следует, что , что доказывает первое равенство свойства 3).

Подробное доказательство свойства 1) можно найти в учебнике В. А. Ильин, Г. Д. Ким " Линейная алгебра и аналитическая геометрия".

Заметим, что для любой матрицы и единичных матрицы и справедливо:

Транспонирование матриц. Пусть . Матрица называется транспонированной к матрице A, если

Транспонированная матрица также обозначается символами и .

Заметим, что при транспонировании матрицы её строки становятся столбцами матрицы , с теми же номерами, а столбцы - строками.

Теорема 2.4. Операция транспонирования матриц обладает следующими свойствами:

1) ;

2) , для любого действительного числа ;

3) ;

4) , для любых матриц A и B, для которых имеют смысл левые части равенств.

Свойства 1), 2), 4) непосредственно вытекают из определения.

Приведём доказательство свойства 3). Пусть и , при таком согласовании размеров матриц A и B произведения AB и существуют, при этом размеры и совпадают и равны . Пусть - элемент матрицы AB в позиции (i, j), - элемент матрицы , - элемент матрицы в позиции (i, j).

что доказывает справедливость свойства 3).

 

ПРИМЕРЫ

Систему из m уравнений с n неизвестными

можно представить в матричном виде

и тогда всю систему можно записать так:

AX = B,

где A имеет смысл таблицы коэффициентов aij системы уравнений.

Если m = n и матрица A невырожденная, то решение этого уравнения состоит в нахождении обратной матрицы A - 1, поскольку умножив обе части уравнения на эту матрицу слева

A - 1AX = A - 1B

A − 1A — превращается в E (единичную матрицу). И это даёт возможность получить столбец корней уравнений

X = A - 1B.

Все правила, по которым проводятся операции над матрицами, выводятся из операций над системами уравнений.

ВОПРОС№3

1) Определитель 2 порядка:
|a11 a12|
| | = a11*a22-a12*a21
|a21 a22|

|2 5|
| | = 1
|1 3|

2) Определитель 3 порядка:
|a11 a12 a13|
|a21 a22 a23| = (a11*a22*a23+a12*a23*a31+a21*a32*a13)-(a13*a22*a31+a23*a32*a11+a12*a21*a33)
|a31 a32 a33|

| 2 1 4|
| 5 7 2| = -140
|10 3 8|

Примеры:
|1 123456789|
|1 123456789|
=0

|1 0 0|
|0 1 0| = 1
|0 0 1|

|1 2 3|
|4 5 6| = 0
|5 7 9|

ВОПРОС№4

Свойства определителей

СВОЙСТВО 1. Величина определителя не изменится, если все его строки заменить столбцами, причем каждую строку заменить столбцом с тем же номером, то есть

.

СВОЙСТВО 2. Перестановка двух столбцов или двух строк определителя равносильна умножению его на -1. Например,

.

СВОЙСТВО 3. Если определитель имеет два одинаковых столбца или две одинаковые строки, то он равен нулю.

СВОЙСТВО 4. Умножение всех элементов одного столбца или одной строки определителя на любое число k равносильно умножению определителя на это число k. Например,

.

СВОЙСТВО 5. Если все элементы некоторого столбца или некоторой строки равны нулю, то сам определитель равен нулю. Это свойство есть частный случае предыдущего (при k=0).

СВОЙСТВО 6. Если соответствующие элементы двух столбцов или двух строк определителя пропорциональны, то определитель равен нулю.

СВОЙСТВО 7. Если каждый элемент n-го столбца или n-й строки определителя представляет собой сумму двух слагаемых, то определитель может быть представлен в виде суммы двух определителей, из которых один в n-м столбце или соответственно в n-й строке имеет первые из упомянутых слагаемых, а другой - вторые; элементы, стоящие на остальных местах, у вех трех определителей одни и те же. Например,

СВОЙСТВО 8. Если к элементам некоторого столбца (или некоторой строки) прибавить соответствующие элементы другого столбца (или другой строки), умноженные на любой общий множитель, то величина определителя при этом не изменится. Например,

.

Дальнейшие свойства определителей связаны с понятием алгебраического дополнения и минора. Минором некоторого элемента называется определитель, получаемый из данного путем вычеркиванием строки и столбца, на пересечении которых расположен этот элемент.

Алгебраическое дополнение любого элемента определителя равняется минору этого элемента, взятому со своим знаком, если сумма номеров строки и столбца, на пересечении которых расположен элемент, есть число четное, и с обратным знаком, если это число нечетное.

Алгебраическое дополнение элемента мы будем обозначать большой буквой того же наименования и тем же номером, что и буква, кторой обозначен сам элемент.

СВОЙСТВО 9. Определитель

равен сумме произведений элементов какого-либо столбца (или строки) на их алгебраические дополнения.

Иначе говоря, имеют место следующие равенства:

, ,

, ,

,

ВОПРОС№5

Миноры матрицы

Пусть дана квадратная матрица А, n - ого порядка. Минором некоторого элемента аij, определителя матрицы n - ого порядка называется определитель (n - 1) - ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент аij. Обозначается Мij.

Рассмотрим на примере определителя матрицы 3 - его порядка:

 

, тогда согласно определению минора, минором М12, соответствующим элементу а12, будет определитель:

 

При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы. Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 - его порядка будет выглядеть так:

, знак перед произведением равен (-1)n, где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента аij называется его минор, взятый со знаком " +", если сумма (i + j) четное число, и со знаком " -", если эта сумма нечетное число. Обозначается Аij.
Аij = (-1)i+j × Мij.

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения. Пример:

Разложение определителя

По элементам i-й строки:

По элементам j-го столбца:

Например, при n = 4 разложение по первой строке


Свойства определителя

1.

2. Если все элементы какой-нибудь строки (столбца) определителя равны нулю, то определитель равен нулю.

3. Если матрица B получена из матрицы A перестановкой двух каких-либо ее строе (столбцов), то

4. Общий множитель всех элементов произвольной строки (столбца) определителя можно вынести за знак определителя.

5. Определитель, содержащий две пропорциональные строки (столбца), равен нулю.

6. Пусть - квадратная матрица порядка n; k - фиксированное натуральное число: - матрицы, которые получаются из A заменой ее k-й строки (столбца) соответственно строками (столбцами) Тогда

7. Определитель не меняется от прибавления к какой-либо его строке (столбцу) другой его строки (столбца), умноженной на произвольное число.

8. Если какая-либо строка (столбец) определителя есть линейная комбинация других его строк (столбцов), то определитель равен нулю.

9.

 

ВОПРОС№6

Обра́ тная ма́ трица — такая матрица A-1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:

Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.

Свойства обратной матрицы

  • , где det обозначает определитель.
  • (AB) − 1 = B − 1A − 1 для любых двух обратимых матриц A и B.
  • (AT) − 1 = (A − 1)T где * T обозначает транспонированную матрицу.
  • (kA) − 1 = k − 1A − 1 для любого коэффициента .
  • Если необходимо решить систему линейных уравнений Ax = b, (b — ненулевой вектор) где x — искомый вектор, и если A - 1 существует, то x = A − 1b. В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Точные (прямые) методы

Метод Гаусса—Жордана

Возьмём две матрицы: саму A и единичную E. Приведём матрицу A к единичной матрице методом Гаусса—Жордана. После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A-1.

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц Λ i (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

.

.

Вторая матрица после применения всех операций станет равна Λ, то есть будет искомой. Сложность алгоритма — O(n3).

Пример 14.7 Найдите обратную матрицу для матрицы .

Решение. Находим определитель

 

ВОПРОС№7

Миноры матрицы

Пусть дана квадратная матрица А, n - ого порядка. Минором некоторого элемента аij, определителя матрицы n - ого порядка называется определитель (n - 1) - ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент аij. Обозначается Мij.

Рассмотрим на примере определителя матрицы 3 - его порядка:

 

, тогда согласно определению минора, минором М12, соответствующим элементу а12, будет определитель:

 

При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы. Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 - его порядка будет выглядеть так:

, знак перед произведением равен (-1)n, где n = i + j.

Ранг матрицы

Рангом системы строк (столбцов) матрицы A с m строк и n столбцов называется максимальное число линейно независимых строк (столбцов). Несколько строк (столбцов) называются линейно независимыми, если ни одна из них не выражается линейно через другие. Ранг системы строк всегда равен рангу системы столбцов, и это число называется рангом матрицы.

Ранг матрицы — наивысший из порядков миноров этой матрицы, отличных от нуля.

Обычно ранг матрицы A обозначается ( ) или . Оба обозначения пришли к нам из иностранных языков, потому и употребляться могут оба. Последний вариант свойственен для английского языка, в то время как первый — для немецкого, французского и ряда других языков.

2 метода вычисления ранга матрицы: 1) метод окаймляющих миноров; 2) метод элементарных преобразований. Суть первого метода заключается в следующем. Пусть в матрице A найден ненулевой минор k-го порядка M. Рассмотрим все миноры (k + 1)-го порядка, включающие в себя (окаймляющие) минор M; если все они равны нулю, то ранг матрицы равен k. В противном случае среди окаймляющих миноров найдется ненулевой, и вся процедура повторяется. Что касается второго метода, то воспользуемся элементарными преобразованиями 1) отбрасывание нулевой строки (столбца) и 2) транспонирование матрицы.

Определение

Пусть — прямоугольная матрица.

Тогда по определению рангом матрицы A является:

  • ноль, если A — нулевая матрица;
  • число , где Mr — минор матрицы A порядка r, а Mr + 1 — окаймляющий к нему минор порядка (r + 1), если они существуют.
Теорема (о корректности определения рангов). Пусть все миноры матрицы порядка k равны нулю (Mk = 0). Тогда , если они существуют.

 

Связанные определения

  • Ранг матрицы M размера называют полным, если .
  • Базисный минор матрицы A — любой ненулевой минор матрицы A порядка r, где .
    • Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными строками и столбцами. (Они определены неоднозначно в силу неоднозначности базисного минора.)

Свойства

  • Теорема (о базисном миноре): Пусть — базисный минор матрицы A, тогда:

1. базисные строки и базисные столбцы линейно независимы;

2. любая строка (столбец) матрицы A есть линейная комбинация базисных строк (столбцов).

  • Следствия:

o Если ранг матрицы равен r, то любые p: p > r строк или столбцов этой матрицы будут линейно зависимы.

o Если A — квадратная матрица, и , то строки и столбцы этой матрицы линейно зависимы.

o Пусть , тогда максимальное количество линейно независимых строк (столбцов) этой матрицы равно r.

Теорема (об инвариантности ранга при элементарных преобразованиях): Введём обозначение для матриц, полученных друг из друга элементарными преобразованиями. Тогда справедливо утверждение: Если , то их ранги равны.

Теорема Кронекера — Капелли: Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы. В частности:

o Количество главных переменных системы равно рангу системы.

o Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

Линейное преобразование и ранг матрицы

Пусть A — матрица размера над полем C (или R). Пусть T — линейное преобразование, соответствующее A в стандартном базисе; это значит, что T(x) = Ax. Ранг матрицы A — это размерность области значений преобразования T.

 

 

ВОПРОС№8

Методы решения

Прямые (или точные) методы, позволяют найти решение за определённое количество шагов. Итерационные методы, основаны на использовании повторяющегося процесса и позволяют получить решение в результате последовательных приближений.

Прямые методы

  • Метод Гаусса

·  Метод Крамера

·  Матричный метод

 

ВОПРОС№9

Метод Крамера

Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Создан Габриэлем Крамером в 1751 году

Описание метода

Для системы n линейных уравнений с n неизвестными (над произвольным полем)

с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде

(i-ый столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

Пример

Система линейных уравнений:

Определители:

Решение:

 

ВОПРОС№10

Матричный метод

Ма́ тричный метод решения систем линейных алгебраических уравнений с ненулевым определителем состоит в следующем.

Пусть дана система линейных уравнений с n неизвестными (над произвольным полем):

Тогда её можно переписать в матричной форме:

AX = B, где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:

Умножим это матричное уравнение слева на A - 1 — матрицу, обратную к матрице A:

Так как A − 1A = E, получаем X = A - 1B. Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A:

.

Для однородной системы линейных уравнений, то есть когда вектор B = 0, действительно обратное правило: система AX = 0 имеет нетривиальное (то есть ненулевое) решение только если detA = 0. Такая связь между решениями однородных и неоднородных систем линейных уравнений носит название альтернативы Фредгольма.

Пример решения неоднородной СЛАУ

Сначала убедимся в том, что определитель матрицы из коэффициентов при неизвестных СЛАУ не равен нулю.

Теперь вычислим алгебраические дополнения для элементов матрицы, состоящей из коэффициентов при неизвестных. Они нам понадобятся для нахождения обратной матрицы.



ВОПРОС№11

Метод Гаусса

Ме́ тод Га́ усса [1] — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные

Описание метода

Пусть исходная система выглядит следующим образом

Матрица A называется основной матрицей системы, b — столбцом свободных членов.

Тогда согласно свойству элементарных преобразований над строками основную матрицу этой системы можно привести к ступенчатому виду(эти же преобразования нужно применять к столбцу свободных членов):

При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных [3].

Тогда переменные называются главными переменными. Все остальные называются свободными.

Если хотя бы одно число , где i > r, то рассматриваемая система несовместна.

Пусть для любых i > r.

Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом ( , где — номер строки):

,
где

Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают

Пример

Покажем, как методом Гаусса можно решить следующую систему:

Обнулим коэффициенты при во второй и третьей строчках. Для этого вычтем из них первую строчку, умноженную на и , соответственно:

Теперь обнулим коэффициент при в третьей строке, вычтя из неё вторую строку, умноженную на :

В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.

На втором этапе разрешим полученные уравнения в обратном порядке. Имеем:

из третьего;


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 456; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.177 с.)
Главная | Случайная страница | Обратная связь