Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ТЕМА 5. Законы распределения случайной величины



График плотности нормального распределения называется

q—кривой Гаусса

—кривой Бернулли

—кривой Пауссона

—кривой Лапласа

 

Нормальное распределение случайной величины возникает тогда, когда варьирование случайной величины обусловлено воздействием

—малого числа факторов

q—большого числа факторов

—редкими факторами

—конечным заранее определенным числом факторов

 

Дискретная случайная величина, выражающая число появления события А в n независимых испытаниях, проводимых в равных условиях и с одинаковой вероятностью появления события в каждом испытании, называется распределенной по

—нормальному закону

—по закону Пуассона

q—биномиальному закону

—по показательному закону

 

Если случайная величина имеет биномиальное распределение, n – число независимых испытаний, а p – вероятность наступления события, то математическое ожидание вычисляется по формуле

q—

 

Если случайная величина имеет биномиальное распределение, n – число независимых испытаний, а p – вероятность наступления события, то дисперсия случайной величины вычисляется по формуле

q—

 

В распределении Пуассона редких событий параметр а равен

q—

 

Свойство стационарности потока событий означает, что вероятность появления k событий за промежуток времени

—не зависит от числа k

—не зависит от величины промежутка времени

q—зависит только от числа k и величины промежутка времени

—не зависит ни от числа k ни от величины промежутка времени

 

Для расчета вероятностей ошибок при округлении показаний измерительных приборов используют

q—равномерное распределение

—биномиальное распределение

—распределение Пуассона

—нормальное распределение

 

Функция надежности связана с

—нормальным распределением

—биномиальным распределением

—равномерным распределением

q—показательным распределением

 

Математическое ожидание равномерно распределенной случайной величины вычисляется по формуле

q—

 

Дисперсия равномерно распределенной случайной величины вычисляется по формуле

q—

 

Вероятность попадания равномерно распределенной случайной величины в интервал вычисляется по формуле

q—

 

Плотность распределения случайной величины с показательным распределением имеет вид

q—

 

Функция распределения случайной величины с показательным распределением имеет вид

q—

 

У показательного распределения математическое ожидание и среднее квадратическое отклонение

—всегда различны

—всегда различаются на единицу

q—всегда равны

—всегда равны 1

 

Если - интенсивность отказов работы элемента, то 1/ - это

—надежность работы

—скорость отказов работы

—вероятность отказа

q—наработка на отказ

 

Графиком плотности распределения равномерно распределенной случайной величины является

q—ступенчатая функция

—парабола

—гипербола

—экспонента

 

Для равномерно распределенной случайной величины параметр с вычисляется по формуле

q—

 

Распределение Пуассона имеет

—0 параметров

—два параметра

q—один параметр

—три параметра

 

Показательное распределение имеет

—0 параметров

—три параметра

—два параметра

q—один параметр

 

Нормальное распределение имеет

q—два параметра

—0 параметров

—один параметр

—три параметра

 

Среднее квадратическое отклонение биномиально распределенной случайной величины вычисляется по формуле

q—

 

В распределении Пуассона редких событий при

q—

 

В точке кривая Гаусса имеет

—точку перегиба

—точку минимума

—точку разрыва

q—точку максимума

 

Точки и являются для кривой Гаусса

q—точками перегиба

—точками максимума

—точками минимума

—точками разрыва

 

Функция плотности нормального распределения с математическим ожиданием и средне – квадратическим отклонением задается формулой

q—

 

Вероятность того, что нормально распределенная случайная величина Х, имеющая математическое ожидание а и средне – квадратическое отклонение , примет значение из интервала равна

q—

 

Вероятность того, что отклонение нормально распределенной случайной величины Х от ее математического ожидания не превзойдет по абсолютной величине , равна

q—

 

Распределение Пуассона характеризуется тем, что его математическое ожидание и дисперсия

q—равны между собой

—обратно пропорциональны друг другу

—оба равны 0

—отличаются друг от друга на 1

 

Поток событий называется простейшим, если он обладает следующими свойствами

—стационарностью, отсутствием последействия, независимостью

q—стационарностью, отсутствием последействия, ординарностью

—отсутствием последействия, периодичностью, непрерывностью

—стационарностью, периодичностью, непрерывностью

 

Интенсивностью потока называется

—общее число появления событий в наблюдаемый отрезок времени

—среднее время между появлением событий

q—среднее число появлений событий за единицу времени

—общее время между появлением событий

 

Случайная величина, являющаяся числом появлений событий в простейшем потоке за фиксированный промежуток времени, имеет распределение

—нормальное

—биномиальное

—показательное

q—Пуассона

 

Непрерывная случайная величина, являющаяся промежутком времени между появлением двух событий в простейшем потоке, имеет

—равномерное распределение

—нормальное распределение

—биномиальное распределение

q—показательное распределение

 

Параметрами нормального распределения являются

q—математическое ожидание и средне – квадратическое отклонение

—функция распределения и функция плотности распределения

—функция и

—дисперсия и средне – квадратическое отклонение

 

Если плотность распределения непрерывной случайной величины имеет вид , где с= const, то эта случайная величина имеет

—нормальное распределение

q—равномерное распределение

—показательное распределение

—биномиальное распределение

 

Плотность нормального распределения определяется формулой

q—

 

Случайная величина равномерно распределена на отрезке [2, 6]. Ее дисперсия равна

—3

q—

—2

 

Случайная величина равномерно распределена на отрезке [2, 8]. Ее математическое ожидание равно

—2

—3

—8

q—5

 

Случайная величина имеет биномиальное распределение с параметрами n=40 и p=0, 3. Ее математическое ожидание равно

—3

—18

q—12

—10

 

Случайная величина имеет биномиальное распределение с параметрами n=20 и p=0, 4. Ее дисперсия равна

—9

q—4, 8

—13

—2, 1

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 462; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.05 с.)
Главная | Случайная страница | Обратная связь