Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Вопрос №12. Уравнение прямой с угловым коэффициентом.



Пусть дана прямая L на координатной плоскости Оху.

Определение. Углом наклона прямой к оси абсцисс называется угол поворота оси абсцисс вокруг любой ее точки против часовой стрелки до положения параллельности (или совпадения) с данной прямой.

рис.1.

Из определения следует, что угол наклона прямой L к оси Ох может изменяться от нуля до : . Если прямая , то .

Пусть (1)

– общее уравнение прямой L, где – нормальный вектор прямой L и . Тогда и (см. рис.1). Выразим у из уравнения (1)

.

, .

Уравнение прямой L принимает вид:

.

Определение. Уравнение прямой вида

(2)

называется уравнением прямой с угловым коэффициентом, а коэффициент k называется угловым коэффициентом данной прямой.

Теорема. В уравнении прямой с угловым коэффициентом

угловой коэффициент k равен тангенсу угла наклона прямой к оси абсцисс:

. (3)

Доказательство. 1) Если прямая , то и . С другой стороны, ее нормальный вектор и .

Тогда и, следовательно, , ч.т.д.

2) Пусть , тогда , и . Пусть F – точка пересечения прямой L с осью абсцисс.

Тогда

Опишем окружность единичного радиуса с центром в точке F, а в точке оси Ох с координатой проведем касательную m к этой окружности. См. рис.2.

рис.2.

Выберем положительное направление на прямой m, так, чтобы . Тогда ось m является осью тангенсов для данной единичной (тригонометрической) окружности.

Пусть Р – точка пересечения прямой L с осью тангенсов m. Тогда, с одной стороны, , где – угол наклона прямой L к оси Ох, а, с другой стороны, точка и , откуда и следует равенство , ч.т.д.

Теорема доказана.

– уравнение прямой с угловым коэффициентом, где – угловой коэффициент прямой, а – отрезок, отсекаемый прямой на оси

Вопрос №13. Общее уравнение плоскости. Взаимное расположение плоскостей. Расстояние от точки до плоскости.

Общее уравнение плоскости: Ax + By + Cz + D = 0

где А, В, С – координаты вектора -вектор нормали к плоскости.

Взаимное расположение плоскостей:

Параллельные плоскости

Получим условия параллельности или совпадения двух плоскостей и заданных общими уравнениями:

(4.23)

Необходимым и достаточным условием параллельности или совпадения плоскостей (4.23) является условие коллинеарности их нормалей Следовательно, если плоскости (4.23) параллельны или совпадают, то т.е. существует такое число что

и наоборот.

 

 

Плоскости совпадают, если помимо этих условий справедливо Тогда первое уравнение в (4.23) имеет вид т.е. равносильно второму, поскольку

Таким образом, плоскости (4.23) параллельны тогда и только тогда, когда соответствующие коэффициенты при неизвестных в их уравнениях пропорциональны, т.е. существует такое число что но Плоскости (4.23) совпадают тогда и только тогда, когда все соответствующие коэффициенты в их уравнениях пропорциональны: и

Условия параллельности и совпадения плоскостей (4.23) можно записать в виде

Отсюда следует критерий параллельности или совпадения двух плоскостей (4.23):

или

 

Поверхности уровня линейного четырехчлена

Поверхностью уровня функции трех переменных называется геометрическое место точек координатного пространства в которых функция принимает постоянное значение, т.е.

Для линейного четырехчлена уравнение поверхности уровня имеет вид

(4.24)

При любом фиксированном значении постоянной уравнение (4.24) описывает плоскость. Рассмотрим поведение семейства поверхностей уровня, отличающихся значением постоянной. Поскольку коэффициенты и не изменяются, то у всех плоскостей (4.24) будет одна и та же нормаль Следовательно, поверхности уровня линейного четырехчлена D представляют собой семейство параллельных плоскостей (рис.4.19). Поскольку нормаль совпадает с градиентом (см. пункт 3 замечаний 4.2), а градиент направлен в сторону наискорейшего возрастания функции, то при увеличении постоянной поверхности уровня (4.24) переносятся параллельно в направлении нормали.

Пересекающиеся плоскости

Необходимым и достаточным условием пересечения двух плоскостей (4.22) является условие неколлинеарности их нормалей, или, что то же самое, условие непропорциональности коэффициентов при неизвестных:

(4.25)


При этом условии система уравнений


имеет бесконечно много решений, которые определяют прямую пересечения плоскостей, заданных уравнениями (4.23).

 

Расстояние от точки до плоскости - это наименьшее из расстояний между этой точкой и точками плоскости. Известно, что расстояние от точки до плоскости равно длине перпендикуляра, опущенного из этой точки на плоскость. Если плоскость задана уравнением , то расстояние от точки до этой плоскости можно вычислить по формуле
.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 367; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь