Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Температура и термодинамическое равновесие. Нулевой закон термодинамики. Измерение температуры. Температурные шкалы. Виды термометров.



Термодинамическое равновесие — состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объем, энтропия). В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений.

На практике условие изолированности означает, что процессы установления равновесия протекают гораздо быстрее, чем происходят изменения на границах системы (то есть изменения внешних по отношению к системе условий) и осуществляется обмен системы с окружением веществом и энергией. Иными словами, термодинамическое равновесие достигается, если скорость релаксационных процессов достаточно велика (как правило, это характерно для высокотемпературных процессов) либо велико время для достижения равновесия (этот случай имеет место в геологических процессах).

В реальных процессах часто реализуется неполное равновесие, однако степень этой неполноты может быть существенной и несущественной. При этом возможны три варианта:

1. равновесие достигается в какой-либо части (или частях) относительно большой по размерам системы — локальное равновесие,

2. неполное равновесие достигается вследствие разности скоростей релаксационных процессов, протекающих в системе — частичное равновесие,

3. имеют место как локальное, так и частичное равновесие.

ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ И ТЕМПЕРАТУРА

Термодинамическое равновесие — состояние системы, при котором ее параметры остаются неизменными сколь угодно долгое время при неизменности внешних условий.

Температура — физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы и определяющая направление теплообмена между телами (от горячего к холодному).

Международная практическая шкала градуируется в градусах Цельсия (°С).\
Реперные точки:
температура замерзания воды при атмосферном давлении ;
температура кипения воды при атмосферном давлении .

Термодинамическая температурная шкала (абсолютная шкала температур) градуируется в Кельвинах (К). В качестве реперной точки взята тройная точка воды: , — температура и давление, при которых лед, вода и насыщенный пар находятся в термодинамическом равновесии.

Термодинамическая температура (T) и температура по Международной практической шкале (t) связаны соотношением: .

Пусть два тела имеют первоначально разные температуры и , .
При теплообмене энергия будет переходить от горячего тела холодному.

Теплообмен будет происходить до тех пор, пока температуры тел не выровняются.
Пусть — масса первого тела, — его удельная теплоемкость — количество тепла, которое необходимо передать одному килограмму вещества, из которого сделано тело, чтобы повысить его температуру на один градус.
Соответственно и — масса и удельная теплоемкость вещества второго тела.
Тогда количество тепла, которое потеряет первое тело, равно количеству тепла, которое перейдет второму, если система изолирована:
— уравнение теплового баланса.
Из уравнения теплового баланса можно рассчитать установившуюся при наступлении термодинамического равновесия температуру:
.

Нулевое начало термодинамики (общее начало термодинамики) — физический принцип, утверждающий, что вне зависимости от начального состояния системы в конце концов в ней при фиксированных внешних условиях установится термодинамическое равновесие, а также что все части системы при достижении термодинамического равновесия будут иметь одинаковую температуру.

Примечание — нулевое начало термодинамики:

Для каждой изолированной термодинамической системы существует состояние термодинамического равновесия, которого она при фиксированных внешних условиях с течением времени самопроизвольно достигает.

Измерение температуры

Чтобы измерить температуру какого-либо тела, его необходимо привести в тепловой контакт с термометром. Термометр — прибор для измерения температуры. Основной частью термометра является термометрическое тело, приводимое в тепловой контакт с объектом, температуру которого надо измерить. В жидкостных термометрах термометрическим телом служит либо ртуть, либо подкрашенный спирт. В термометрах сопротивления термометрическим телом служит металлическая проволока, а температура определяется по ее электрическому сопротивлению. Термометр не должен иметь большой массы: массивный термометр изменит температуру того тела, с которым он приведен в тепловой контакт.

Термометр фиксирует свою собственную температуру, равную температуре тела, с которым он находится в термодинамическом равновесии.

Для измерения температуры можно воспользоваться зависимостью любой макроскопической величины (объема, давления, электрического сопротивления и др.) от температуры. На практике чаще всего используют зависимость объема жидкости (ртути, спирта) от температуры (жидкостные термометры). Необходимо прежде всего создать температурную шкалу, позволяющую приписывать температуре определенные числа. Устройство большинства термометров основано на предположении, что положенное в основу измерения физическое свойство термометрического тела линейно непрерывно зависит от температуры. Для построения шкалы выбирают две так называемые реперные точки, которым приписываются произвольные значения температуры, а шкала между ними делится на равные части. Этим устанавливается единица измерения температуры. В метрической системе для практического употребления принята шкала Цельсия (Международная практическая шкала температур). При построении этой шкалы принимают, что при нормальном атмосферном давлении температура плавления льда равна 0 °С, а температура кипения воды 100 °С (реперные точки). Шкалу между точками 0 и 100 делят на 100 равных частей, называемых градусами. Перемещение указателя (в жидкостных термометрах — конца столбика жидкости) на одно деление соответствует изменению температуры на 1 °С. Обозначение температуры по шкале Цельсия — t °С.

Такие термометры обладают существенными недостатками: 1) диапазон температур ограничен: при низких температурах жидкости затвердевают, при высоких испаряются; 2) показания различных термометров, например ртутного и спиртового, совпадая при 0 °С и 100 °С, не совпадают при других температурах в силу того, что температурные коэффициенты объемного расширения спирта и ртути по-разному зависят от температуры.

Газовый термометр непригоден для определения температуры в области высоких температур, при которых происходит термическая диссоциация и ионизация, и очень низких температур, при которых все реальные газы конденсируются.

Температ у рные шк а лы, системы сопоставимых числовых значений температуры. температура не является непосредственно измеряемой величиной; её значение определяют по температурному изменению какого-либо удобного для измерения физического свойства термометрического вещества (см. Термометрия). Выбрав термометрическое вещество и свойство, необходимо задать начальную точку отсчёта и размер единицы температуры — градуса. Таким образом определяют эмпирические Т. ш. В Т. ш. обычно фиксируют две основные температуры, соответствующие точкам фазовых равновесий однокомпонентных систем (так называемые реперные или постоянные точки), расстояние между которыми называется основным температурным интервалом шкалы. В качестве реперных точек используют: тройную точку воды, точки кипения воды, водорода и кислорода, точки затвердевания серебра, золота и др. Размер единичного интервала (единицы температуры) устанавливают как определённую долю основного интервала. За начало отсчёта Т. ш. принимают одну из реперных точек. Так можно определить эмпирическую (условную) Т. ш. по любому термометрическому свойству х. Если принять, что связь между х и температурой t линейна, то температура tx= n (xt - х0) / (xn - x0), где xt, x0 и xn — числовые значения свойства х при температуре t в начальной и конечной точках основного интервала, (xn - x0) / n — размер градуса, п— число делений основного интервала.

Виды термометров

Термо́ метр — прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:

§ жидкостные

§ механические

§ электрические

§ оптические

§ газовые

§ инфракрасные

Жидкостные термометры

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды.

В связи с запретом применения ртути во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав галинстан.

Об удалении разлившейся ртути из разбитого термометра см. статью Демеркуризация

Механические термометры

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используетсяметаллическая спираль или лента из биметалла.

Электрические термометры

Принцип работы электрических термометров основан на изменениисопротивления проводника при изменении температуры окружающей среды.

Электрические термометры более широкого диапазона основаны натермопарах (контакт между металлами сразнойэлектроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100(сопротивление при 0 °C — 100Ω ) PT1000 (сопротивление при 0 °C — 1000Ω ) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон − 200 — +850 °C.

Отсюда, RT сопротивление при T °C, R0 сопротивление при 0 °C, и константы (для платинового сопротивления) —

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В развитых странах уже давно имеется тенденция отказа от ртутных градусников в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Инфракрасный термометр обладает рядом неоспоримых преимуществ, а именно:

*безопасность использования (даже при серьезных механических повреждениях ничто не угрожает здоровью)

*более высокая точность измерения

*минимальное время проведения процедуры (измерение проводится в течение 0, 5 секунды)

*возможность группового сбора данных

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 3091; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь