Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам.
Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем. Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца. Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника. Существует несколько эквивалентных формулировок первого начала термодинамики В любой изолированной системе запас энергии остаётся постоянным Это — формулировка Дж. П. Джоуля (1842 г.). Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Это определение особенно важно для химической термодинамики[2] (ввиду сложности рассматриваемых процессов). Иными словами, внутренняя энергия является функцией состояния. В циклическом процессе внутренняя энергия не изменяется. Изменение полной энергии системы в квазистатическом процессе равно количеству теплоты Q, сообщённому системе, в сумме с изменением энергии, связанной с количеством вещества N при химическом потенциале μ, и работы A'[3], совершённой над системой внешними силами и полями, за вычетом работы A, совершённой самой системой против внешних сил Δ U = Q − A + μ Δ N + A'. Для элементарного количества теплоты δ Q, элементарной работы δ A и малого приращения dU внутренней энергии первый закон термодинамики имеет вид: dU = δ Q − δ A + μ dN + δ A'. Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая — работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил. Важно заметить, что dU и dN являются полными дифференциалами, а δ A и δ Q — нет. Частные случаи Рассмотрим несколько частных случаев: 1. Если δ Q > 0, то это означает, что тепло к системе подводится. 2. Если δ Q < 0, аналогично — тепло отводится. 3. Если δ Q = 0, то система не обменивается теплом с окружающей средой и называется адиабатически изолированной. Обобщая: в конечном процессе элементарные количества теплоты могут быть любого знака. Общее количество теплоты, которое мы назвали просто Q — это алгебраическая сумма количеств теплоты, сообщаемых на всех участках этого процесса. В ходе процесса теплота может поступать в систему или уходить из неё разными способами. При отсутствии работы над системой и потоков энергии-вещества, когда δ A' = 0, δ Q = 0, dN = 0, выполнение системой работы δ A приводит к тому, что Δ U < 0, и энергия системы U убывает. Поскольку запас внутренней энергии U ограничен, то процесс, в котором система бесконечно долгое время выполняет работу без подвода энергии извне, невозможен, что запрещает существование вечных двигателей первого рода. Первое начало термодинамики: § при изобарном процессе § при изохорном процессе (A = 0) § при изотермическом процессе (Δ U = 0) Здесь — масса газа, — молярная масса газа, — молярная теплоёмкость при постоянном объёме, — давление, объём и температура газа соответственно, причём последнее равенство верно только для идеального газа.
39.Теплоемкость и ее зависимость от термодинамического процесса. Основы классической теории теплоемкости идеального газа. Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяющая отношение бесконечно малого количества теплоты δ Q, полученного телом, к соответствующему приращению его температуры δ T: Единица измерения теплоёмкости в системе СИ — Дж/К. Удельной теплоёмкостью называется количество теплоты, которое необходимо подвести к телу чтобы изменить его температуру на один (1) градус. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость. Массовая теплоёмкость (С) — это количество теплоты, которую необходимо подвести к единице массы тела (обычно 1 кг), чтобы нагреть его на 1 K, измеряется в джоулях на килограмм на кельвин (Дж/кг К). Объёмная теплоёмкость (С′ ) — это количество теплоты, которую необходимо подвести к 1 м³ вещества, чтобы нагреть его на 1 K, измеряется в джоулях на кубический метр на кельвин (Дж/м³ ·К). Молярная теплоёмкость (Сμ ) — это количество теплоты, которую необходимо подвести к 1 молю вещества, чтобы нагреть его на 1 K, измеряется в джоулях на моль на кельвин (Дж/(моль·К)). |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 668; Нарушение авторского права страницы