Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Теорема Гаусса для электростатического поля в вакууме. Применение теоремы Гаусса к расчёту некоторых электростатических полей в вакууме.



Задачу вычисления напряженности поля системы электрических зарядов, используя помощью принципа суперпозиции электростатических полей можно сильно облегчить, если применять открытую немецким ученым К. Гауссом (1777—1855) теорему, которая определяет поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.

Из определения потока вектора напряженности сквозь замкнутую поверхность, поток вектора напряженности сквозь сферическую поверхность радиуса r, которая охватывает точечный заряд Q, находящийся в ее центре (рис. 1), равен

Этот результат справедлив для замкнутой поверхности произвольной формы. Действительно, если заключить сферу (рис. 1) в произвольную замкнутую поверхность, то каждая линия напряженности, которая пронизывает сферу, пройдет и сквозь эту поверхность.

В случае, если замкнутая поверхность любой формы охватывает заряд (рис. 2), то при пересечении любой линии напряженности с поверхностью она то входит в нее, то выходит из нее. При вычислении потока нечетное число пересечений в конечном счете сводится к одному пересечению, так как поток полагается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, которые входят в поверхнЕсли замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, которые входят в поверхность, равно числу линий напряженности, которые выходят из нее.

Значит, для поверхности произвольной формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/ε 0, т. е.

(1)

Знак потока совпадает со знаком заряда Q.

Исследуем общий случай произвольной поверхности, окружающей n зарядов. Используя с принцип суперпозиции, напряженность Е поля, которая создавается всеми зарядами, равна сумме напряженностей Ei полей, которые создаваются каждым зарядом в отдельности. Поэтому

Согласно (1), каждый из интегралов, который стоит под знаком суммы, равен Qi0. Значит,

(2)

Формула (2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на ε 0. Эта теорема получена математически для векторного поля произвольной природы русским математиком М.В.Остроградским (1801—1862), а затем независимо от него применительно к электростатическому полю — К. Гауссом.

В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью ρ =dQ/dV, которая различна в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, которая охватывает некоторый объем V,

(3)

Используя формулу (3), теорему Гаусса (2) можно записать так:

 

29.

Циркуляцией вектора напряженности называется работа, которую совершают электрические силы при перемещении единичного положительного заряда по замкнутому пути L

(13.18)

Так как работа сил электростатического поля по замкнутому контуру равна нулю (работа сил потенциального поля), следовательно циркуляция напряженности электростатического поля по замкнутому контуру равна нулю.

30.

Потенциал электростатического поля. Поле консервативной силы может быть описано не только векторной функцией, но эквивалентное описание этого поля можно получить, определив в каждой его точке подходящую скалярную величину. Для электростатического поля такой величиной является потенциал электростатического поля, определяемый как отношение потенциальной энергии пробного заряда q к величине этого заряда,  = Wп / q, откуда следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Единицей измерения потенциала служит Вольт (1 В).

Потенциал поля точечного заряда Q в однородной изотропной среде с диэлектрической проницаемостью  :

.

Принцип суперпозиции. Потенциал есть скалярная функция, для неё справедлив принцип суперпозиции. Так для потенциала поля системы точечных зарядов Q1, Q2, Qn имеем

,

где ri - расстояние от точки поля, обладающей потенциалом , до заряда Qi. Если заряд произвольным образом распределен в пространстве, то

,

где r - расстояние от элементарного объема dx, dy, dz до точки (x, y, z), где определяется потенциал; V - объем пространства, в котором распределен заряд.

Потенциал и работа сил электрического поля. Основываясь на определении потенциала, можно показать, что работа сил электрического поля при перемещении точечного заряда q из одной точки поля в другую равна произведению величины этого заряда на разность потенциалов в начальной и конечной точках пути, A = q (    
Если по аналогии с потенциальной энергией считать, что в точках, бесконечно удалённых от электрических зарядов - источников поля, потенциал равен нулю, то работу сил электрического поля при перемещении заряда q из точки 1 в бесконечность можно представить как Aq1.
Таким образом, потенциал â данной точке электростатического поля - это физическая величина, численно равная работе, совершаемой силами электрического поля при перемещении единичного положительного точечного заряда из данной точки поля в бесконечно удаленную:  = A/ q.
В некоторых случаях потенциал электрического поля нагляднее определяется как физическая величина, численно равная работе внешних сил против сил электрического поля при перемещении единичного положительного точечного заряда из бесконечности в данную точку. Последнее определение удобно записать следующим образом:

.

В современной науке и технике, особенно при описании явлений, происходящих в микромире, часто используется единица работы и энергии, называемая электрон-вольтом (эВ). Это работа, совершаемая при перемещении заряда, равного заряду электрона, между двумя точками с разностью потенциалов 1 В: 1 эВ = 1, 60 10   Кл 1 В = 1, 60 10   Дж

 

 

Эквипотенциальные поверхности — понятие, применимое к любому потенциальному векторному полю, например, к статическому электрическому полю или к ньютоновскому гравитационному полю. Эквипотенциальная поверхность — это поверхность, на которой скалярный потенциал данного потенциального поля принимает постоянное значение (поверхность уровня потенциала). Другое, эквивалентное, определение — поверхность, в любой своей точке ортогональная силовым линиям поля.

Поверхность проводника в электростатике является эквипотенциальной поверхностью. Кроме того, помещение проводника на эквипотенциальную поверхность не вызывает изменения конфигурации электростатического поля. Этот факт используется в методе изображений, который позволяет рассчитывать электростатическое поле для сложных конфигураций.

В (стационарном) гравитационном поле уровень неподвижной жидкости устанавливается по эквипотенциальной поверхности. В частности, приближенно можно утверждать, что по эквипотенциальной поверхности гравитационного поля Земли проходит уровень океанов[1]. Форма поверхности океанов[2], продолженная на поверхность Земли, называется геоидом и играет важную роль в геодезии. Геоид, таким образом является эквипотенциальной поверхностью силы тяжести, состоящей из гравитационной и центробежной составляющей.

 

31.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 1314; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь