Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Энергетический спектр молекул знать очень важно, поскольку система электронных, колебательных и вращательных уровней определяет все физико-химичейсие свойства.



Энергетический спектр молекул значительно шире энергетических спектров атомов и имеет большое число близко расположенных друг к другу энергетических уровней.

Энергетический спектр молекул содержит много близко расположенных уровней. Если рассматривать лишь колебательные состояния одного электронного терма, то хорошей моделью спектра одной моды является эквидистантный спектр гармонического осциллятора. Правда, почти во всех экспериментах существенную роль играет ангармоничность колебаний. Для многоатомных молекул, содержащих более 3 - 4 атомов, плотность колебательных состояний очень быстро растет с энергией.

Многоэлектронные атомы. Для атомов, содержащих более одного валентного электрона, уравнение Шрёдингера может быть решено лишь приближенно. В приближении центрального поля предполагается, что каждый электрон движется в центрально-симметричном поле, создаваемом ядром и другими электронами. В этом случае состояние электрона полностью определяется квантовыми числами п, l, ml и ms (ms – проекция спина на фиксированную ось). Электроны в многоэлектронном атоме образуют оболочки, энергии которых растут по мере увеличения квантового числа п. Оболочки с n = 1, 2, 3... обозначаются буквами K, L, M... и т.д. Согласно принципу Паули, в каждом квантовом состоянии не может находиться более одного электрона, т.е. никакие два электрона не могут иметь одинаковый набор квантовых чисел п, l, ml и ms. Это приводит к тому, что оболочки в многоэлектронном атоме заполняются в строго определенном порядке и каждой оболочке соответствует строго определенное число электронов.

 

Состав ядра атома

После открытия нейтрона физики Д. Д. Иваненко (советский ученый) и В. Гейзенберг (немецкий ученый) в 1932 г. выдвинули гипотезу о протонно-нейтронной модели атомного ядра. Согласно этой модели ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов — нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева, т.е. Np = Z. Сумма числа протонов и нейтронов равна массовому числу, тогда число нейтронов Nn = AZ. Например, ядро атома кислорода состоит из 8 протонов и 16 – 8 = 8 нейтронов. Ядро атома состоит из 92 протонов и 235 – 92 = 143 нейтронов.

Обозначаются нейтральный атом и его ядро одним и тем же символом элемента , где Х — обозначение химического элемента; Z — порядковый номер элемента в периодической таблице Д.И. Менделеева или зарядовое число; А — массовое число, равное округленной до целого числа массе атома, выраженной в а.е.м.

Если проследить за распределением числа протонов и нейтронов в ядрах различных элементов периодической таблицы Д.И. Менделеева, то можно заметить, что для ядер элементов вплоть до середины таблицы число нейтронов примерно равно числу протонов, т.е. . По мере утяжеления ядер, количество нейтронов возрастает и в конце таблицы .

Нуклон (от лат. nucleus - ядро) – единое название протона и нейтрона – частиц, из которых состоит атомное ядро. Протон и нейтрон во многом сходные частицы. Они относятся к одному типу элементарных частиц - барионам, имеют одинаковый спин 1/2 и одинаково участвуют в сильном (ядерном) взаимодействии. Их массы очень близки и различаются всего на 0.14%. В современной физике протон и нейтрон рассматривают как два состояния (две модификации) одной частицы – нуклона. Эти два состояния различаются величиной электрического заряда. Протон - это положительно заряженный нуклон, а нейтрон - нуклон, имеющий нулевой электрический заряд.

Ма́ ссовое число́ атомного ядра — суммарное количество протонов и нейтронов (называемых общим термином «нуклоны») в ядре. Обычно обозначается буквой A. Массовое число близко к атомной массе изотопа, выраженной в атомных единицах массы, но совпадает с ней только для углерода-12, поскольку атомная единица массы (а. е. м.) определяется сейчас как 1/12 массы атома 12С. Во всех остальных случаях атомная масса не является целым числом, в отличие от массового числа. Массовое число в обозначении конкретного изотопа пишется верхним левым индексом, например 232Th.

Зарядовое число — количество протонов в атомном ядре. Зарядовое число равно заряду ядра в единицах элементарного заряда и одновременно равно порядковому номеру соответствующего ядру химического элемента в таблице Менделеева. Зарядовое число обычно обозначается буквой Z. Ядра с одинаковым зарядовым числом, но различным массовым числом A (которое равно сумме числа протонов Z и числа нейтронов N) являются различными изотопами одного и того же химического элемента, поскольку именно заряд ядра определяет структуру электронной оболочки атома и, следовательно, его химические свойства.

 

 

Изото́ пы— разновидности атомовядер) одного химического элемента с разным количеством нейтронов в ядре. Название связано с тем, что изотопы находятся в одном и том же месте (в одной клетке) таблицы Менделеева. Химические свойства атома зависят практически только от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём) и почти не зависит от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число (например, 12C, 222Rn).

Изоба́ ры— нуклиды разных элементов, имеющие одинаковое массовое число;

Для обозначения атомных ядер используется следующая система:

  • в середине ставится символ химического элемента, что однозначно определяет зарядовое число ядра;
  • слева сверху от символа элемента ставится массовое число .

Таким образом, состав ядра оказывается полностью определён, так как .

Пример такого обозначения:

— ядро урана-238, в котором 238 нуклонов, из которых 92 — протоны, так как элемент уран имеет 92-й номер в таблице Менделеева.

Иногда, однако, для полноты вокруг обозначения элемента указывают все характеризующие ядро его атома числа:

  • слева снизу — зарядовое число , то есть, то же самое, что указано символом элемента;
  • слева сверху — массовое число ;
  • справа снизу — изотопическое число ;
  • если речь идёт о ядерных изомерах, к массовому числу приписывается буква из последовательности m, n, p, q, … (иногда используют последовательность m1, m2, m3, … ). Иногда эту букву указывают в качестве самостоятельного индекса справа сверху.

Примеры таких обозначений:

, , , .

Масса

Из-за разницы в числе нейтронов изотопы элемента имеют разную массу , которая является важной характеристикой ядра. В ядерной физике массу ядер принято измерять в атомных единицах массы ( а. е. м. ), за одну а. е. м. принимают 1/12 часть массы нуклида 12C[сн 2]. Следует отметить, что стандартная масса, которая обычно приводится для нуклида — это масса нейтрального атома. Для определения массы ядра нужно из массы атома вычесть сумму масс всех электронов (более точное значение получится, если учесть еще и энергию связи электронов с ядром).

Кроме того, в ядерной физике часто используется энергетический эквивалент массы. Согласно соотношению Эйнштейна, каждому значению массы соответствует полная энергия:

, где скорость света в вакууме.

Соотношение между а. е. м. и её энергетическим эквивалентом в джоулях:

,

а так как 1 электронвольт = 1, 602176× 10− 19 Дж, то энергетический эквивалент а. е. м. в МэВ равен[1][3]:

.

Энергия связи

Зависимость средней энергии связи (по оси y) от массового числа (по оси x) ядер.

Большая энергия связи нуклонов, входящих в ядро, говорит о существовании ядерных сил, поскольку известные гравитационные силы слишком малы, чтобы преодолеть взаимное электростатическое отталкивание протонов в ядре. Связь нуклонов осуществляется чрезвычайно короткоживущими силами, которые возникают вследствие непрерывного обмена частицами, называемыми пи-мезонами, между нуклонами в ядре.

Экспериментально было обнаружено, что для всех стабильных ядер масса ядра меньше суммы масс составляющих его нуклонов, взятых по отдельности. Эта разница называется дефектом массы или избытком массы и определяется соотношением:

,

где и — массы свободного протона и нейтрона, — масса ядра.

Согласно принципу эквивалентности массы и энергии дефект массы представляет собой массу, эквивалентную работе, затраченной ядерными силами, чтобы собрать все нуклоны вместе при образовании ядра. Эта величина равна изменению потенциальной энергии нуклонов в результате их объединения в ядро.

Энергия, эквивалентная дефекту массы, называется энергией связи ядра и равна:

,

где — скорость света в вакууме.

Другим важным параметром ядра является энергия связи, приходящаяся на один нуклон ядра, которую можно вычислить, разделив энергию связи ядра на число содержащихся в нём нуклонов:

Эта величина представляет собой среднюю энергию, которую нужно затратить, чтобы удалить один нуклон из ядра, или среднее изменение энергии связи ядра, когда свободный протон или нейтрон поглощается в нём.

Как видно из поясняющего рисунка, при малых значениях массовых чисел удельная энергия связи ядер резко возрастает и достигает максимума при (примерно 8, 8 Мэв). Нуклиды с такими массовыми числами наиболее устойчивы. С дальнейшим ростом средняя энергия связи уменьшается, однако в широком интервале массовых чисел значение энергии почти постоянно ( МэВ), из чего следует, что можно записать .

Такой характер поведения средней энергии связи указывает на свойство ядерных сил достигать насыщения, то есть на возможность взаимодействия нуклона только с малым числом «партнёров». Если бы ядерные силы не обладали свойством насыщения, то в пределах радиуса действия ядерных сил каждый нуклон взаимодействовал бы с каждым из остальных и энергия взаимодействия была бы пропорциональна , а средняя энергия связи одного нуклона не была бы постоянной у разных ядер, а возрастала бы с ростом .

Общая закономерность зависимости энергии связи от массового числа описывается формулой Вайцзеккера в рамках теории капельной модели ядра

Важную информацию о свойствах ядер содержит зависимость удельной энергии связи от массового числа А.

Удельная энергия связи Еуд - энергия связи ядра, приходящаяся на 1 нуклон:

 

Удельной энергией связи ядра называется энергия связи, приходящаяся на один нуклон Есв. На рис. 20 представлен график зависимости удельной энергии связи от массового числа. Анализируя этот график, можно сделать следующие выводы:

1. Удельная энергия связи не является постоянной величиной для различных ядер, т.е. прочность связи нуклонов в различных ядрах различна. Наиболее прочно нуклоны связаны в ядрах с массовыми числами в диапазоне примерно от 40 до 100. Для этой группы ядер удельная энергия связи равна примерно 8, 7 МэВ/нуклон.

2. Удельная энергия связи ядер с массовым числом А > 100 уменьшается и для урана составляет 7, 6 МэВ.

3. В легких ядрах удельная энергия связи уменьшается с уменьшением числа нуклонов в ядре. Характерным для кривой удельной энергии связи в этой группе ядер является наличие острых максимумов и минимумов.

 

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 568; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.035 с.)
Главная | Случайная страница | Обратная связь